Chain length‐dependent termination in pulsed‐laser polymerization. VIII. The temperature dependence of the rate coefficient of bimolecular termination in the bulk polymerization of styrene
暂无分享,去创建一个
[1] Thomas P. Davis,et al. Critically evaluated rate coefficients for free‐radical polymerization, 2.. Propagation rate coefficients for methyl methacrylate , 2000 .
[2] G. Zifferer,et al. Chain‐length dependent termination in pulsed‐laser polymerization, 7. The evaluation of the power‐law exponent b from the chain‐length distribution in the low frequency (single‐pulse) limit for the reference systems styrene and methyl methacrylate in bulk at 25°C , 1999 .
[3] Philipp Vana,et al. Chain‐length dependent termination in pulsed‐laser polymerization, 6. The evaluation of the rate coefficient of bimolecular termination kt for the reference system methyl methacrylate in bulk at 25°C , 1998 .
[4] G. Zifferer,et al. Chain‐length dependent termination in pulsed‐laser polymerization, 3. On the prospects of determining the bimolecular termination constant kt from rate data , 1998 .
[5] G. Zifferer,et al. Chain-length dependent termination in pulsed-laser polymerization, 2. On the prospects of determining the bimolecular termination constant kt from the second moment of the chain-length distribution† , 1997 .
[6] M. Buback,et al. Termination kinetics of free‐radical polymerization of styrene over an extended temperature and pressure range , 1997 .
[7] B. Yamada,et al. ESR study of the radical polymerization of styrene , 1992 .
[8] S. Kobatake,et al. Dependence of ESR spectra of poly(fumaric ester) radicals on temperature and ester alkyl group , 1992 .
[9] Gregory T. Russell,et al. Consistent values of rate parameters in free radical polymerization systems. II. Outstanding dilemmas and recommendations , 1992 .
[10] G. Zifferer,et al. Kinetics of pseudostationary free radical polymerization—I. A first approach , 1989 .
[11] D. H. Napper,et al. Consistent values of rate parameters in free radical polymerization systems , 1988 .
[12] G. Zifferer,et al. Relative reaction probabilities in polymer‐polymer reactions, 1. Investigations with Monte‐Carlo model chains , 1988 .
[13] M. Buback,et al. Chain‐length dependence of free‐radical polymerization rate coefficients from laser‐induced experiments , 1988 .
[14] Franziska Hinkelmann,et al. The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2†. The direct determination of the rate of constant of chain propagation‡ , 1987 .
[15] H. Hippler,et al. Time-resolved study of laser-induced high-pressure ethylene polymerization , 1986 .
[16] O. F. Olaj,et al. The laser flash‐initiated polymerization as a tool of evaluating (individual) kinetic constants of free radical polymerization, 1. Outline of method and first results , 1985 .
[17] G. Zifferer,et al. Termination processes in free radical polymerization, 4. The evaluation of an analytical expression relating the bimolecular rate constant of termination to the length of the two radicals involved , 1982 .
[18] J. W. Breitenbach,et al. Kombination und disproportionierung von modellradikalen für die wachsende polystyrolkette , 1979 .
[19] K. O'driscoll,et al. Absolute Rate Constants in Free-Radical Polymerization. III. Determination of Propagation and Termination Rate Constants for Styrene and Methyl Methacrylate , 1977 .
[20] H. Kauffmann,et al. The diels‐alder intermediate as a chain‐transfer agent in spontaneous styrene polymerization. II. Evidence from the comparison of the chain‐length distribution of spontaneously initiated and photoinitiated polymers , 1977 .
[21] H. Kauffmann,et al. The Diels‐Alder intermediate as a chain transfer agent in spontaneous styrene polymerization 1. New evidence from the kinetic analysis of photoinitiated polymerization , 1976 .
[22] K. C. Berger. Disproportionierung und Kombination als Abbruchsmechanismen bei der radikalischen Polymerisation von Styrol, 2. Analyse der temperaturabhängigkeiten† , 1975 .
[23] G. Meyerhoff,et al. Disproportionierung und kombination als abbruchmechanismen bei der radikalischen polymerisation von styrol, 1.Versuche mit 14C‐markierten 2,2′‐azoisobutyronitril , 1975 .
[24] K. Horie,et al. Fast Reaction and Micro-Brownian Motion of Flexible Polymer Molecules in Solution , 1973 .
[25] D. Patterson. Thermodynamics of Non-Dilute Polymer Solutions , 1967 .
[26] J. W. Breitenbach,et al. Untersuchungen über Molekulargewichtsverteilungen von Hochpolymeren, 6. Mitt.: Zum Problem des Disproportionierungsabbruchs bei der gestarteten Polymerisation des Styrols , 1964 .
[27] C. R. Patrick,et al. Diffusion-controlled reactions in free radical polymerisation. II. A random-walk method for calculating rate coefficients, and its consequences , 1964 .
[28] G. Reed,et al. Diffusion-controlled termination during the initial stages of free radical polymerization of methyl methacrylate , 1961 .
[29] C. R. Patrick,et al. Diffusion‐controlled reactions in free radical polymerisation , 1961 .
[30] J. S. Rowlinson,et al. Lower critical points in polymer solutions , 1960 .
[31] S. Benson,et al. A Simple Dilatometric Method of Determining the Rate Constants of Chain Reactions. II. The Effect of Viscosity on the Rate Constants of Polymerization Reactions1 , 1959 .
[32] G. Schulz. Über die Beziehung zwischen Diffusionskoeffizient und Geschwindigkeitskonstante bimolekularer Reaktionen in Lösung , 1956 .