Chain length‐dependent termination in pulsed‐laser polymerization. VIII. The temperature dependence of the rate coefficient of bimolecular termination in the bulk polymerization of styrene

The photosensitized polymerization of styrene in bulk was investigated in the temperature range of 25–70°C with respect to the average rate coefficient of bimolecular chain termination kt, especially its chain length dependence at low conversions, by means of pulsed laser polymerization (PLP). Three methods were applied: two of them were based on equations originally derived for chain length independent termination taking the quantity kt contained therein as an average kt, while the third one consisted in a nonlinear fit of the experimental chain length distribution (CLD) obtained at very low pulse frequencies (LF-PLP) to a theoretical equation. The exponent b characterizing the extent of chain length dependence was unanimously found to decrease from about 0.17–0.20 at 25°C to 0.08–0.11 at 70°C, slightly depending on which of the three methods was chosen. This trend toward more “ideal” polymerization kinetics with rise of polymerization temperature is tentatively ascribed to a quite general type of polymer solution behavior that consists in a (slow) approach to a lower critical solution temperature (LCST), which is associated with a decrease of the solvent quality of the monomer toward the polymer, an effect that should be accompanied with a decrease of the parameter b. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 697–705, 2000

[1]  Thomas P. Davis,et al.  Critically evaluated rate coefficients for free‐radical polymerization, 2.. Propagation rate coefficients for methyl methacrylate , 2000 .

[2]  G. Zifferer,et al.  Chain‐length dependent termination in pulsed‐laser polymerization, 7. The evaluation of the power‐law exponent b from the chain‐length distribution in the low frequency (single‐pulse) limit for the reference systems styrene and methyl methacrylate in bulk at 25°C , 1999 .

[3]  Philipp Vana,et al.  Chain‐length dependent termination in pulsed‐laser polymerization, 6. The evaluation of the rate coefficient of bimolecular termination kt for the reference system methyl methacrylate in bulk at 25°C , 1998 .

[4]  G. Zifferer,et al.  Chain‐length dependent termination in pulsed‐laser polymerization, 3. On the prospects of determining the bimolecular termination constant kt from rate data , 1998 .

[5]  G. Zifferer,et al.  Chain-length dependent termination in pulsed-laser polymerization, 2. On the prospects of determining the bimolecular termination constant kt from the second moment of the chain-length distribution† , 1997 .

[6]  M. Buback,et al.  Termination kinetics of free‐radical polymerization of styrene over an extended temperature and pressure range , 1997 .

[7]  B. Yamada,et al.  ESR study of the radical polymerization of styrene , 1992 .

[8]  S. Kobatake,et al.  Dependence of ESR spectra of poly(fumaric ester) radicals on temperature and ester alkyl group , 1992 .

[9]  Gregory T. Russell,et al.  Consistent values of rate parameters in free radical polymerization systems. II. Outstanding dilemmas and recommendations , 1992 .

[10]  G. Zifferer,et al.  Kinetics of pseudostationary free radical polymerization—I. A first approach , 1989 .

[11]  D. H. Napper,et al.  Consistent values of rate parameters in free radical polymerization systems , 1988 .

[12]  G. Zifferer,et al.  Relative reaction probabilities in polymer‐polymer reactions, 1. Investigations with Monte‐Carlo model chains , 1988 .

[13]  M. Buback,et al.  Chain‐length dependence of free‐radical polymerization rate coefficients from laser‐induced experiments , 1988 .

[14]  Franziska Hinkelmann,et al.  The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2†. The direct determination of the rate of constant of chain propagation‡ , 1987 .

[15]  H. Hippler,et al.  Time-resolved study of laser-induced high-pressure ethylene polymerization , 1986 .

[16]  O. F. Olaj,et al.  The laser flash‐initiated polymerization as a tool of evaluating (individual) kinetic constants of free radical polymerization, 1. Outline of method and first results , 1985 .

[17]  G. Zifferer,et al.  Termination processes in free radical polymerization, 4. The evaluation of an analytical expression relating the bimolecular rate constant of termination to the length of the two radicals involved , 1982 .

[18]  J. W. Breitenbach,et al.  Kombination und disproportionierung von modellradikalen für die wachsende polystyrolkette , 1979 .

[19]  K. O'driscoll,et al.  Absolute Rate Constants in Free-Radical Polymerization. III. Determination of Propagation and Termination Rate Constants for Styrene and Methyl Methacrylate , 1977 .

[20]  H. Kauffmann,et al.  The diels‐alder intermediate as a chain‐transfer agent in spontaneous styrene polymerization. II. Evidence from the comparison of the chain‐length distribution of spontaneously initiated and photoinitiated polymers , 1977 .

[21]  H. Kauffmann,et al.  The Diels‐Alder intermediate as a chain transfer agent in spontaneous styrene polymerization 1. New evidence from the kinetic analysis of photoinitiated polymerization , 1976 .

[22]  K. C. Berger Disproportionierung und Kombination als Abbruchsmechanismen bei der radikalischen Polymerisation von Styrol, 2. Analyse der temperaturabhängigkeiten† , 1975 .

[23]  G. Meyerhoff,et al.  Disproportionierung und kombination als abbruchmechanismen bei der radikalischen polymerisation von styrol, 1.Versuche mit 14C‐markierten 2,2′‐azoisobutyronitril , 1975 .

[24]  K. Horie,et al.  Fast Reaction and Micro-Brownian Motion of Flexible Polymer Molecules in Solution , 1973 .

[25]  D. Patterson Thermodynamics of Non-Dilute Polymer Solutions , 1967 .

[26]  J. W. Breitenbach,et al.  Untersuchungen über Molekulargewichtsverteilungen von Hochpolymeren, 6. Mitt.: Zum Problem des Disproportionierungsabbruchs bei der gestarteten Polymerisation des Styrols , 1964 .

[27]  C. R. Patrick,et al.  Diffusion-controlled reactions in free radical polymerisation. II. A random-walk method for calculating rate coefficients, and its consequences , 1964 .

[28]  G. Reed,et al.  Diffusion-controlled termination during the initial stages of free radical polymerization of methyl methacrylate , 1961 .

[29]  C. R. Patrick,et al.  Diffusion‐controlled reactions in free radical polymerisation , 1961 .

[30]  J. S. Rowlinson,et al.  Lower critical points in polymer solutions , 1960 .

[31]  S. Benson,et al.  A Simple Dilatometric Method of Determining the Rate Constants of Chain Reactions. II. The Effect of Viscosity on the Rate Constants of Polymerization Reactions1 , 1959 .

[32]  G. Schulz Über die Beziehung zwischen Diffusionskoeffizient und Geschwindigkeitskonstante bimolekularer Reaktionen in Lösung , 1956 .