Constructing Artificial Glass Nanobarrier Layer on Copper Spheres with Robust Antioxidation Properties for Printable Electrode

[1]  Junsheng Yu,et al.  Process challenges of high-performance silicon heterojunction solar cells with copper electrodes , 2023, Solar Energy Materials and Solar Cells.

[2]  D. Peng,et al.  Submicron Cu@glass core-shell powders for the preparation of conductive thick films on ceramic substrates , 2022, Advanced Powder Technology.

[3]  Saurabh Khuje,et al.  Recent Advancement of Emerging Nano Copper-Based Printable Flexible Hybrid Electronics. , 2021, ACS nano.

[4]  N. Naseri,et al.  Inkjet Printing Technology for Supercapacitor Application: Current State and Perspectives. , 2020, ACS applied materials & interfaces.

[5]  Saurabh Khuje,et al.  Printable Copper Sensor Electronics for High Temperature , 2020 .

[6]  D. Peng,et al.  Cu@Ni core–shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films , 2020, Nanotechnology.

[7]  Li Xiang,et al.  Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. , 2020, ACS nano.

[8]  Yoshio Kobayashi,et al.  Synthesis of metallic copper nanoparticles in aqueous solution by surfactant-free reduction and silica coating , 2020, Chemical Papers.

[9]  A. Hamácek,et al.  Study of copper thick film metallization on aluminum nitride , 2020 .

[10]  Dermot Brabazon,et al.  Advanced materials of printed wearables for physiological parameter monitoring , 2020, Materials Today.

[11]  Arno Thielens,et al.  A New Frontier of Printed Electronics: Flexible Hybrid Electronics , 2019, Advanced materials.

[12]  Yong Zhu,et al.  Nanomaterial‐Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications , 2019, Advanced materials.

[13]  Dae-Hyeong Kim,et al.  Material‐Based Approaches for the Fabrication of Stretchable Electronics , 2019, Advanced materials.

[14]  John A Rogers,et al.  Mechanically‐Guided Structural Designs in Stretchable Inorganic Electronics , 2019, Advanced materials.

[15]  Yu Cao,et al.  Flexible Hybrid Electronics for Digital Healthcare , 2019, Advanced materials.

[16]  Yang Wang,et al.  Printed supercapacitors: materials, printing and applications. , 2019, Chemical Society reviews.

[17]  Takao Someya,et al.  Materials and structural designs of stretchable conductors. , 2019, Chemical Society reviews.

[18]  Jian Gao,et al.  PVP-Mediated Galvanic Replacement Synthesis of Smart Elliptic Cu-Ag Nanoflakes for Electrically Conductive Pastes. , 2019, ACS applied materials & interfaces.

[19]  Xi Lu,et al.  Chemical formation of soft metal electrodes for flexible and wearable electronics. , 2018, Chemical Society reviews.

[20]  Mingsheng Tan,et al.  Purification of Copper Nanowires To Prepare Flexible Transparent Conductive Films with High Performance , 2018, ACS Applied Nano Materials.

[21]  Su Yeon Lee,et al.  Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes. , 2018, ACS applied materials & interfaces.

[22]  T. Shi,et al.  A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics , 2017 .

[23]  Xiang Xiao,et al.  Photoreactive and Metal‐Platable Copolymer Inks for High‐Throughput, Room‐Temperature Printing of Flexible Metal Electrodes for Thin‐Film Electronics , 2016, Advanced materials.

[24]  K. Shinagawa,et al.  Sintering force behind the viscous sintering of two particles , 2016 .

[25]  Matthew J. Catenacci,et al.  Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion , 2015, Scientific Reports.

[26]  J. Cure,et al.  Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools. , 2015, Chemistry.

[27]  L. Menabue,et al.  Towards the controlled release of metal nanoparticles from biomaterials: Physico-chemical, morphological and bioactivity features of Cu-containing sol–gel glasses , 2013 .

[28]  Shlomo Magdassi,et al.  Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing , 2009 .

[29]  Younan Xia,et al.  Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink‐Jet Printing , 2008 .

[30]  Ilia Platzman,et al.  Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions , 2008 .

[31]  W. L. Liu,et al.  ITO as a Diffusion Barrier Between Si and Cu , 2005 .

[32]  D. Bellet,et al.  Bulk observation of metal powder sintering by X-ray synchrotron microtomography , 2004 .

[33]  G. Manhès,et al.  Evaporation and Sublimation of Boric Acid: Application for Boron Purification from Organic Rich Solutions , 2001 .

[34]  S. M. Sayyah,et al.  Electroplating of copper films on steel substrates from acidic gluconate baths , 2000 .

[35]  Ya. I. Belyi,et al.  Calculation of the surface tension of molten borosilicate glasses , 1996 .

[36]  Johnson,et al.  Negative-charge state of hydrogen in silicon. , 1990, Physical review. B, Condensed matter.

[37]  Anand Jagota,et al.  Micromechanical modeling of powder compacts—I. Unit problems for sintering and traction induced deformation , 1988 .

[38]  G. D. Giacomo,et al.  Thermodynamics of aqueous solutions of boric acid , 1988 .

[39]  De’an Yang,et al.  Preparation and properties of antioxidative BaO–B2O3–SiO2 glass-coated Cu powder for copper conductive film on LTCC substrate , 2017, Journal of Materials Science: Materials in Electronics.

[40]  Eicke R. Weber,et al.  Physics of Copper in Silicon , 2002 .