Versatile biotechnological applications of Euglena gracilis

[1]  P. Myler,et al.  Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world , 2022, Biology open.

[2]  Jiangxin Wang,et al.  High‐throughput sequencing revealed low‐efficacy genome editing using Cas9 RNPs electroporation and single‐celled microinjection provided an alternative to deliver CRISPR reagents into Euglena gracilis , 2022, Plant biotechnology journal.

[3]  Jiangxin Wang,et al.  Euglena gracilis Promotes Lactobacillus Growth and Antioxidants Accumulation as a Potential Next-Generation Prebiotic , 2022, Frontiers in Nutrition.

[4]  M. Vesteg,et al.  Multiple Independent Losses of Photosynthetic Ability in Eukaryotic Evolution and the Metabolism of Non-Photosynthetic Plastids , 2022, Chemické listy.

[5]  J. Krajčovič,et al.  Discrimination of Euglena gracilis strains Z and bacillaris by MALDI‐TOF MS , 2022, Journal of applied microbiology.

[6]  Jiangxin Wang,et al.  A Synthetic Biology Perspective on the Bioengineering Tools for an Industrial Microalga: Euglena gracilis , 2022, Frontiers in Bioengineering and Biotechnology.

[7]  A. Benda,et al.  Euglena gracilis can grow in the mixed culture containing Cladosporium westerdijkiae, Lysinibacillus boronitolerans and Pseudobacillus badius without the addition of vitamins B1 and B12. , 2022, Journal of biotechnology.

[8]  M. Wakisaka,et al.  Effect of phytochemical vanillic acid on the growth and lipid accumulation of freshwater microalga Euglena gracilis , 2021, World journal of microbiology & biotechnology.

[9]  M. Lebert,et al.  Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga—Euglena gracilis , 2021, International journal of molecular sciences.

[10]  Changwei Hu,et al.  Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility. , 2021, Aquatic toxicology.

[11]  J. Steiner,et al.  An ancient glaucophyte c6-like cytochrome related to higher plant cytochrome c6A is imported into muroplasts. , 2021, Journal of cell science.

[12]  H. Nevalainen,et al.  Molecular tools and applications of Euglena gracilis: From biorefineries to bioremediation , 2020, Biotechnology and bioengineering.

[13]  Kengo Suzuki,et al.  Highly Efficient CRISPR-Associated Protein 9 Ribonucleoprotein-Based Genome Editing in Euglena gracilis , 2020, STAR protocols.

[14]  S. Schwartzbach,et al.  Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa , 2019, Biological reviews of the Cambridge Philosophical Society.

[15]  Koji Yamada,et al.  Highly efficient transgene‐free targeted mutagenesis and single‐stranded oligodeoxynucleotide‐mediated precise knock‐in in the industrial microalga Euglena gracilis using Cas9 ribonucleoproteins , 2019, Plant biotechnology journal.

[16]  H. Nevalainen,et al.  Bioproducts From Euglena gracilis: Synthesis and Applications , 2019, Front. Bioeng. Biotechnol..

[17]  Mark C. Field,et al.  Transcriptome, proteome and draft genome of Euglena gracilis , 2019, BMC Biology.

[18]  J. M. Fernández-Sevilla,et al.  Recovery of Nutrients From Wastewaters Using Microalgae , 2018, Front. Sustain. Food Syst..

[19]  Z. Rehman,et al.  Bio-assessment and remediation of arsenic (arsenite As-III) in water by Euglena gracilis , 2018, Journal of Applied Phycology.

[20]  M. Eliáš,et al.  Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses , 2018, Scientific Reports.

[21]  Olubukola Oluranti Babalola,et al.  Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review , 2017, International journal of environmental research and public health.

[22]  V. Hampl,et al.  Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists , 2017, Current Genetics.

[23]  J. Krajčovič,et al.  On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing , 2017, Journal of Molecular Evolution.

[24]  J. Pires,et al.  A review on the use of microalgal consortia for wastewater treatment , 2017 .

[25]  S. Schwartzbach,et al.  An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis , 2016, Current Genetics.

[26]  K. Schirmer,et al.  Silver nanoparticle toxicity and association with the alga Euglena gracilis , 2015 .

[27]  Changwei Hu,et al.  Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. , 2015, Chemosphere.

[28]  Shigeru Shigeoka,et al.  Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production , 2015, Biotechnology for Biofuels.

[29]  S. Schwartzbach,et al.  Euglenoid flagellates: a multifaceted biotechnology platform. , 2015, Journal of biotechnology.

[30]  J. Krajčovič,et al.  Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain WgmZOflL , 2015, FEBS letters.

[31]  J. Ng,et al.  Toxic effects of individual and combined effects of BTEX on Euglena gracilis. , 2015, Journal of hazardous materials.

[32]  Kamalesh Kumar,et al.  Microalgae - A promising tool for heavy metal remediation. , 2015, Ecotoxicology and environmental safety.

[33]  D. Häder,et al.  Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis - as sensitive endpoints for toxicity evaluation of liquid detergents. , 2014, Journal of photochemistry and photobiology. B, Biology.

[34]  M. Eliáš,et al.  A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis , 2014, FEBS letters.

[35]  D. Häder,et al.  Fast bioassessment of wastewater and surface water quality using freshwater flagellate Euglena gracilis—a case study from Pakistan , 2014, Journal of Applied Phycology.

[36]  J. Ng,et al.  Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ. , 2013, Chemosphere.

[37]  D. Häder,et al.  Ecotoxicity evaluation of a liquid detergent using the automatic biotest ECOTOX , 2013, Ecotoxicology.

[38]  H. Chanakya,et al.  Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment , 2013, Journal of Applied Phycology.

[39]  V. Hampl,et al.  Euglena gracilis and Trypanosomatids Possess Common Patterns in Predicted Mitochondrial Targeting Presequences , 2012, Journal of Molecular Evolution.

[40]  J. Krajčovič,et al.  Nucleus‐encoded mRNAs for Chloroplast Proteins GapA, PetA, and PsbO are Trans‐spliced in the Flagellate Euglena gracilis Irrespective of Light and Plastid Function , 2012, The Journal of eukaryotic microbiology.

[41]  D. Häder,et al.  Chronic toxicity of a laundry detergent to the freshwater flagellate Euglena gracilis , 2012, Ecotoxicology.

[42]  J. Krajčovič,et al.  Selective forces for the origin of spliceosomes , 2012, Journal of Molecular Evolution.

[43]  D. Häder,et al.  Evaluation of the adverse effects of two commonly used fertilizers, DAP and urea, on motility and orientation of the green flagellate Euglena gracilis , 2011 .

[44]  M. Hayashi,et al.  Comparative Profiling Analysis of Central Metabolites in Euglena gracilis under Various Cultivation Conditions , 2011, Bioscience, biotechnology, and biochemistry.

[45]  J. Krajčovič,et al.  The falsifiability of the models for the origin of eukaryotes , 2011, Current Genetics.

[46]  D. Häder,et al.  Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis. , 2011, Chemosphere.

[47]  Peter Richter,et al.  Comparative toxicity of the pesticides carbofuran and malathion to the freshwater flagellate Euglena gracilis , 2011, Ecotoxicology.

[48]  D. Häder,et al.  Monitoring of Waste Water Samples Using the ECOTOX Biosystem and the Flagellate Alga Euglena gracilis , 2011 .

[49]  Broňa Brejová,et al.  A Possible Role for Short Introns in the Acquisition of Stroma-Targeting Peptides in the Flagellate Euglena gracilis , 2010, DNA research : an international journal for rapid publication of reports on genes and genomes.

[50]  D. Häder,et al.  A fast algal bioassay for assessment of copper toxicity in water using Euglena gracilis , 2010, Journal of Applied Phycology.

[51]  J. Krajčovič,et al.  On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability — review , 2009, Folia Microbiologica.

[52]  W. Löffelhardt,et al.  Expression of Nucleus‐Encoded Genes for Chloroplast Proteins in the Flagellate Euglena gracilis , 2009, The Journal of eukaryotic microbiology.

[53]  C. O'kelly,et al.  The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. , 2009, Molecular biology and evolution.

[54]  D. Durnford,et al.  Analysis of Euglena gracilis Plastid-Targeted Proteins Reveals Different Classes of Transit Sequences , 2006, Eukaryotic Cell.

[55]  N. Ekelund,et al.  Effects of the Herbicides Roundup and Avans on Euglena gracilis , 2006, Archives of environmental contamination and toxicology.

[56]  Masakatsu Watanabe,et al.  A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis , 2002, Nature.

[57]  R. Danilov,et al.  Responses of Photosynthetic Efficiency, Cell Shape and Motility in Euglena gracilis (Euglenophyceae) to Short-Term Exposure to Heavy Metals and Pentachlorophenol , 2001 .

[58]  J. Krajčovič,et al.  Antimutagenic effect of heteroxylans, arabinogalactans, pectins and mannans in the Euglena assay , 2001 .

[59]  L. Barsanti,et al.  Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions , 2001, Journal of Applied Phycology.

[60]  D. Häder,et al.  Automated biomonitoring using real time movement analysis of Euglena gracilis. , 2001, Ecotoxicology and environmental safety.

[61]  Michael D. Thompson,et al.  Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon , 2001, Current Genetics.

[62]  D. Häder,et al.  FAST EXAMINATION OF WATER QUALITY USING THE AUTOMATIC BIOTEST ECOTOX BASED ON THE MOVEMENT BEHAVIOR OF A FRESHWATER FLAGELLATE , 1999 .

[63]  J. Dobias,et al.  Antimutagens reduce ofloxacin-induced bleaching in Euglena gracilis. , 1996, Mutation research.

[64]  H. Inui,et al.  Wax ester fermentation in Euglena gracilis , 1982 .

[65]  L. Ebringer Are plastids derived from prokaryotic micro-organisms? Action of antibiotics on chloroplasts of Euglena gracilis. , 1972, Journal of general microbiology.

[66]  M. Mirzaei,et al.  Proteomic response of Euglena gracilis to heavy metal exposure – Identification of key proteins involved in heavy metal tolerance and accumulation , 2020 .

[67]  H. Nevalainen,et al.  Nuclear transformation of the versatile microalga Euglena gracilis , 2019, Algal Research.

[68]  A. Pugazhendhi,et al.  Utilization of algae for biofuel, bio-products and bio-remediation , 2019, Biocatalysis and Agricultural Biotechnology.

[69]  S. Agustí,et al.  Euglena as a potential natural source of value-added metabolites. A review , 2019, Algal Research.

[70]  V. Tyagi,et al.  Phycoremediation: Algae as Eco-friendly Tools for the Removal of Heavy Metals from Wastewaters , 2019, Bioremediation of Industrial Waste for Environmental Safety.

[71]  M. Ike,et al.  Biomass Production and Nutrient Removal through Cultivation of Euglena gracilis in Domestic Wastewater , 2018 .

[72]  W. Martin,et al.  The Mitochondrion of Euglena gracilis. , 2017, Advances in experimental medicine and biology.

[73]  R. Moreno-Sánchez,et al.  Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena. , 2017, Advances in experimental medicine and biology.

[74]  N. Kishimoto,et al.  Evaluation of Growth Characteristics of Euglena gracilis for Microalgal Biomass Production Using Wastewater , 2015 .

[75]  S. Schwartzbach,et al.  Reversion of Endosymbiosis , 2001 .

[76]  L. Ebringer Effects of Drugs on Chloroplasts , 1978 .

[77]  L. Aledort,et al.  A – Biochemistry and Physiology , 1974 .