On Incidence Energy

The incidence energy of a graph is defined as the sum of singular values of its incidence matrix. In this paper, we establish some new bounds on the incidence energy of connected graphs.

[1]  On Incidence Energy of Trees , 2011 .

[2]  A. Sinan Çevik,et al.  On the Laplacian-energy-like invariant , 2014 .

[3]  I. Gutman Estimating the Laplacian Energy-Like Molecular Structure Descriptor , 2012 .

[4]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[5]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[6]  Kinkar Chandra Das,et al.  A Sharp Upper Bound for the Number of Spanning Trees of a Graph , 2007, Graphs Comb..

[7]  V. Nikiforov The energy of graphs and matrices , 2006, math/0603583.

[8]  R. Balakrishnan The energy of a graph , 2004 .

[9]  D. Cvetkovic,et al.  Towards a spectral theory of graphs based on the signless Laplacian, I , 2009 .

[10]  Bolian Liu,et al.  On Sum of Powers of the Signless Laplacian Eigenvalues of Graphs ABSTRACT | FULL TEXT , 2012 .

[11]  I. Gutman,et al.  On Incidence Energy of Graphs , 2022 .

[12]  Jianping Li,et al.  New Results on the Incidence Energy of Graphs 1 , 2012 .

[13]  Shigeru Furuichi,et al.  On refined Young inequalities and reverse inequalities , 2010, 1001.0535.

[14]  Bolian Liu,et al.  A Survey on the Laplacian-Energy-Like Invariant ∗ , 2011 .

[15]  Cvetkovicccc Dragos,et al.  Towards a spectral theory of graphs based on the signless Laplacian, III , 2010 .

[16]  Yanfeng Luo,et al.  On Laplacian-energy-like invariant of a graph < , 2012 .

[17]  Ligong Wang,et al.  Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph , 2010 .

[18]  Dariush Kiani,et al.  On incidence energy of a graph , 2009 .

[19]  Jinlong Shu,et al.  Sharp bounds on the signless laplacian spectral radii of graphs , 2011 .

[20]  R. Merris A survey of graph laplacians , 1995 .

[21]  Bo Zhou,et al.  The Laplacian-energy Like Invariant is an Energy Like Invariant , 2010 .

[22]  Ivan Gutman,et al.  Estimating the Incidence Energy , 2013 .

[23]  H. Kober On the arithmetic and geometric means and on Hölder’s inequality , 1958 .

[24]  Bo Zhou,et al.  More Upper Bounds for the Incidence Energy , 2010 .

[25]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[26]  Bolian Liu,et al.  A Laplacian-energy-like invariant of a graph , 2008 .

[27]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[28]  Bo Zhou,et al.  On the sum of powers of Laplacian eigenvalues of bipartite graphs , 2010 .

[29]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[30]  F. Kittaneh,et al.  Improved Young and Heinz inequalities for matrices , 2010 .

[31]  Xiaogang Liu,et al.  The lollipop graph is determined by its Q-spectrum , 2009, Discret. Math..