Characterizing the source properties of terrestrial gamma ray flashes

Monte Carlo simulations are used to determine source properties of terrestrial gamma ray flashes (TGFs) as a function of atmospheric column depth and beaming geometry. The total mass per unit area traversed by all the runaway electrons (i.e., the total grammage) during a TGF, Ξ, is introduced, defined to be the total distance traveled by all the runaway electrons along the electric field lines multiplied by the local air mass density along their paths. It is shown that key properties of TGFs may be directly calculated from Ξ and its time derivative, including the gamma ray emission rate, the current moment, and the optical power of the TGF. For the calculations presented in this paper, a standard TGF gamma ray fluence, F0 = 0.1 cm−2 above 100 keV for a spacecraft altitude of 500 km, and a standard total grammage, Ξ0 = 1018 g/cm2, are introduced, and results are presented in terms of these values. In particular, the current moments caused by the runaway electrons and their accompanying ionization are found for a standard TGF fluence, as a function of source altitude and beaming geometry, allowing a direct comparison between the gamma rays measured in low‐Earth orbit and the VLF‐LF radio frequency emissions recorded on the ground. Such comparisons should help test and constrain TGF models and help identify the roles of lightning leaders and streamers in the production of TGFs.

[1]  P. N. Bhat,et al.  The spectroscopy of individual terrestrial gamma‐ray flashes: Constraining the source properties , 2016 .

[2]  S. Cummer,et al.  Ground detection of terrestrial gamma ray flashes from distant radio signals , 2016 .

[3]  J. Montanyà,et al.  Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin , 2015, Journal of geophysical research. Atmospheres : JGR.

[4]  M. Trifoglio,et al.  Enhanced detection of terrestrial gamma‐ray flashes by AGILE , 2015, Geophysical research letters.

[5]  J. Dwyer,et al.  Lightning leader altitude progression in terrestrial gamma‐ray flashes , 2015 .

[6]  S. Cummer,et al.  Insights into high peak current in‐cloud lightning events during thunderstorms , 2015 .

[7]  Ningyu Liu,et al.  Effects of small thundercloud electrostatic fields on the ionospheric density profile , 2015 .

[8]  Gerald J. Fishman,et al.  The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes , 2014 .

[9]  W. Xu,et al.  Optical emissions associated with terrestrial gamma-ray flashes , 2013, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[10]  Ningyu Liu,et al.  Properties of the thundercloud discharges responsible for terrestrial gamma‐ray flashes , 2013 .

[11]  P. N. Bhat,et al.  Terrestrial gamma‐ray flashes in the Fermi era: Improved observations and analysis methods , 2013 .

[12]  J. Dwyer,et al.  Radio emissions from terrestrial gamma‐ray flashes , 2013 .

[13]  Steven A. Cummer,et al.  Simultaneous observations of optical lightning and terrestrial gamma ray flash from space , 2013 .

[14]  P. N. Bhat,et al.  Radio signals from electron beams in terrestrial gamma ray flashes , 2013 .

[15]  N. Østgaard,et al.  How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters , 2013 .

[16]  J. Dwyer,et al.  Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges , 2013 .

[17]  Steven A. Cummer,et al.  High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena , 2012, Space Science Reviews.

[18]  V. Pasko,et al.  Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning , 2012 .

[19]  Wei Xu,et al.  Source altitudes of terrestrial gamma‐ray flashes produced by lightning leaders , 2012 .

[20]  N. Østgaard,et al.  The true fluence distribution of terrestrial gamma flashes at satellite altitude , 2012 .

[21]  J. Dwyer The relativistic feedback discharge model of terrestrial gamma ray flashes , 2012 .

[22]  V. Pasko,et al.  Compton scattering effects on the duration of terrestrial gamma‐ray flashes , 2012 .

[23]  M. Cohen,et al.  Confining the angular distribution of terrestrial gamma ray flash emission , 2011 .

[24]  Leonid P. Babich,et al.  Low‐energy electron production by relativistic runaway electron avalanches in air , 2011 .

[25]  Gerald J. Fishman,et al.  The lightning‐TGF relationship on microsecond timescales , 2011 .

[26]  U. Inan,et al.  Terrestrial gamma ray flash production by active lightning leader channels , 2010 .

[27]  J. Dwyer,et al.  Terrestrial gamma ray flashes correlated to storm phase and tropopause height , 2010 .

[28]  P. N. Bhat,et al.  First results on terrestrial gamma ray flashes from the Fermi Gamma‐ray Burst Monitor , 2010 .

[29]  J. Dwyer,et al.  Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft , 2010 .

[30]  N. Østgaard,et al.  Effects of dead time losses on terrestrial gamma ray flash measurements with the Burst and Transient Source Experiment , 2010 .

[31]  G. Piano,et al.  Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite , 2010 .

[32]  S. Cummer,et al.  Spectral dependence of terrestrial gamma‐ray flashes on source distance , 2009 .

[33]  J. Dwyer,et al.  Source mechanisms of terrestrial gamma‐ray flashes , 2008 .

[34]  J. Dwyer,et al.  Time evolution of terrestrial gamma ray flashes , 2008 .

[35]  S. Deng,et al.  Interacting with the SWORD package (SoftWare for the Optimization of Radiation Detectors) , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[36]  J. Dwyer Relativistic breakdown in planetary atmospheres , 2007 .

[37]  U. Inan,et al.  Constraints on terrestrial gamma ray flash production from satellite observation , 2007 .

[38]  Umran S. Inan,et al.  Terrestrial gamma ray flashes and lightning discharges , 2006 .

[39]  J. Dwyer,et al.  Propagation speed of runaway electron avalanches , 2006 .

[40]  Georgios Veronis,et al.  Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders , 2006 .

[41]  A. Regan,et al.  A link between terrestrial gamma‐ray flashes and intracloud lightning discharges , 2005 .

[42]  J. Dwyer,et al.  A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma‐ray flash observations , 2005 .

[43]  S. Cummer,et al.  Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes , 2005 .

[44]  R. P. Lin,et al.  Terrestrial Gamma-Ray Flashes Observed up to 20 MeV , 2005, Science.

[45]  R. Roussel-Dupre,et al.  Fundamental parameters of a relativistic runaway electron avalanche in air , 2004 .

[46]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[47]  Joseph R. Dwyer,et al.  A fundamental limit on electric fields in air , 2003 .

[48]  Umran S. Inan,et al.  Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes , 1999 .

[49]  J. Lowke,et al.  Streamer propagation in air , 1997 .

[50]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[51]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[52]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .