Considerable effort has been made to increase the scale of Linked Data. However, because of the openness of the Semantic Web and the ease of extracting Linked Data from semi-structured sources (e.g., Wikipedia) and unstructured sources, many Linked Data sources often provide conflicting objects for a certain predicate of a real-world entity. Existing methods cannot be trivially extended to resolve conflicts in Linked Data because Linked Data has a scale-free property. In this demonstration, we present a novel system called TruthDiscover, to identify the truth in Linked Data with a scale-free property. First, TruthDiscover leverages the topological properties of the Source Belief Graph to estimate the priori beliefs of sources, which are utilized to smooth the trustworthiness of sources. Second, the Hidden Markov Random Field is utilized to model interdependencies among objects for estimating the trust values of objects accurately. TruthDiscover can visualize the process of resolving conflicts in Linked Data. Experiments results on four datasets show that TruthDiscover exhibits satisfactory accuracy when confronted with data having a scale-free property.
[1]
Wenqiang Liu,et al.
Truth Discovery to Resolve Object Conflicts in Linked Data
,
2015,
ArXiv.
[2]
Simone Paolo Ponzetto,et al.
A Probabilistic Approach for Integrating Heterogeneous Knowledge Sources
,
2014,
ESWC.
[3]
Gerhard Weikum,et al.
WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge
,
2022
.
[4]
Philip S. Yu,et al.
Truth Discovery with Multiple Conflicting Information Providers on the Web
,
2007,
IEEE Transactions on Knowledge and Data Engineering.
[5]
Martin Necaský,et al.
Linked Data Integration with Conflicts
,
2014,
ArXiv.
[6]
Tim Berners-Lee,et al.
Linked Data - The Story So Far
,
2009,
Int. J. Semantic Web Inf. Syst..
[7]
Bo Zhao,et al.
Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation
,
2014,
SIGMOD Conference.