Sputtering in mercury ion thrusters

Ground-based tests of Hg ion thrusters have identified sputter erosion of thruster components as one of the main life limiting phenomena. Subsequent measurements have revealed that sputtering rates can be affected by background gases at pressures as low as 10 to the -10th torr. With the recent interest in thin film technology, sputtering in the presence of reactive gases has been studied in great detail. This paper presents the results of many of those studies and applies them to the sputtering of electric thrusters. A model, which assumes that chemisorption is the dominant mechanism, is applied to the sputtering rate measurements of the screen grid of a 30-cm thruster in the presence of nitrogen. The model utilizes inputs from a variety of experimental and analytical sources. The model of environmental effects on sputtering was applied to thruster conditions of low discharge voltage and a discussion of the comparison of theory and experiment is presented.

[1]  J. R. Pierce,et al.  Scientific foundations of vacuum technique , 1949 .

[2]  O. C. Yonts,et al.  Surface Cleaning by Cathode Sputtering , 1960 .

[3]  O. C. Yonts,et al.  HIGH-ENERGY SPUTTERING , 1960 .

[4]  O. Almén,et al.  Collection and Sputtering Experiments with Noble Gas Ions , 1961 .

[5]  D. Gerstenberg,et al.  Effects of Nitrogen, Methane, and Oxygen on Structure and Electrical Properties of Thin Tantalum Films , 1964 .

[6]  T. Oguri Chemisorption of Nitrogen on Molybdenum , 1964 .

[7]  A. E. Andrews,et al.  Cesium Ion Sputtering of Aluminum , 1966 .

[8]  H. F. Winters Ionic Adsorption and Dissociation Cross Section for Nitrogen , 1966 .

[9]  E. H. Hasseltine,et al.  Cesium‐Ion Bombardment of Aluminum Oxide in a Controlled Oxygen Environment , 1967 .

[10]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[11]  G. Carter,et al.  Ion bombardment of solids , 1968 .

[12]  L. E. Davis,et al.  Desorption, mobility and work function change of mercury on tungsten and molybdenum substrates , 1968 .

[13]  D. King,et al.  Sticking probabilities, redistribution phenomena and desorption spectra for nitrogen on molybdenum and titanium films , 1968 .

[14]  D. Campbell,et al.  The mechanism of reactive sputtering , 1968 .

[15]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[16]  S. Askerov,et al.  CATHODE SPUTTERING OF METALS BY SLOW MERCURY IONS. , 1969 .

[17]  H. F. Winters,et al.  The chemisorption of nitrogen at activated sites on a polycrystalline tungsten surface , 1971 .

[18]  S. Nagata,et al.  Structure of Film Prepared by Low Energy Sputtering of Molybdenum , 1971 .

[19]  L. Schmidt,et al.  Adsorption of H2 and of N2 on (110) Mo* , 1972 .

[20]  H. F. Winters,et al.  Influence of Surface Absorption Characteristics on Reactively Sputtered Films Grown in the Biased and Unbiased Modes , 1972 .

[21]  A. Ignatiev,et al.  The structure of overlayers: I. Se on Ag {001} , 1973 .

[22]  J. Heller,et al.  Reactive sputtering of metals in oxidizing atmospheres , 1973 .

[23]  R. Vahrenkamp Measurement of double charged ions in the beam of a 30-cm mercury bombardment thruster , 1973 .

[24]  M. Cantagrel,et al.  Argon ion etching in a reactive gas , 1973 .

[25]  A. Benninghoven,et al.  Investigation of surface reactions by the static method of secondary ion mass spectrometry: II. The oxidation of chromium in the monolayer range , 1973 .

[26]  H. F. Winters,et al.  Sputtering of chemisorbed gas (nitrogen on tungsten) by low‐energy ions , 1974 .

[27]  D. King,et al.  Reaction mechanism in chemisorption kinetics: nitrogen on the {100} plane of tungsten , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  T. Itoh,et al.  Effect of atmospheres on arsenic diffusion into silicon from the doped oxide layer , 1975 .

[29]  T. Abe,et al.  The deposition rate of metallic thin films in the reactive sputtering process , 1975 .

[30]  A. Ignatiev,et al.  The structure of overlayers: III. Nitrogen on Mo {001} , 1975 .

[31]  F. Shinoki,et al.  Mechanism of rf reactive sputtering , 1975 .

[32]  C. Collett Thruster endurance test , 1976 .

[33]  E. Taglauer,et al.  Sputtering of Absorbed Layers by Ion Bombardement , 1976 .

[34]  R. T. Bechtel,et al.  An endurance test of a 900 series 30-cm engineering model ion thruster , 1976 .

[35]  R. Castellano Reactive ion beam sputtering of thin films of lead, zirconium and titanium , 1977 .

[36]  J. Hrbek Sputtering of metals in the presence of reactive gases , 1977 .

[37]  S. R. Morrison,et al.  The Chemical Physics of Surfaces , 1977 .

[38]  G. Bomchil,et al.  Reactive sputtering of indium targets in a D.C. triode configuration , 1977 .

[39]  P. Martin,et al.  On the influence of reactive gases on sputtering and secondary ion emission , 1978 .

[40]  P. Wilbur Mercury ion thruster research, 1978 , 1978 .

[41]  R. Castellano Reactive Sputter Etching of Thin Films for Pattern Delineation , 1978 .

[42]  E. Fromm,et al.  Interaction of oxygen and nitrogen with clean transition metal surfaces , 1978 .

[43]  V. K. Rawlin,et al.  Effect of facility background gases on internal erosion of the 30-cm Hg ion thruster , 1978 .

[44]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[45]  P. Wilbur A model for nitrogen chemisorption in ion thrusters , 1979 .

[46]  Deutsche Gesellschaft für Luft und Raumfahrt,et al.  Princeton/AIAA/DGLR 14th International Electric Propulsion Conference, Oct. 30-Nov.1, 1979 , Princeton, N.J. , 1979 .

[47]  J. Beattie A model for predicting the wearout lifetime of the LeRC/Hughes 30-cm mercury ion thruster , 1979 .