Multilevel Sequential Monte Carlo Samplers for Normalizing Constants
暂无分享,去创建一个
Yan Zhou | Kody J. H. Law | Pierre Del Moral | Ajay Jasra | P. Moral | A. Jasra | K. Law | Yan Zhou
[1] B. Øksendal. Stochastic Differential Equations , 1985 .
[2] P. Bickel,et al. Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.
[3] Adrian E. Raftery,et al. Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .
[4] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[5] A. Beskos,et al. On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.
[6] Ajay Jasra,et al. Forward and Inverse Uncertainty Quantification using Multilevel Monte Carlo Algorithms for an Elliptic Nonlocal Equation , 2016, 1603.06381.
[7] Kody J. H. Law,et al. Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..
[8] Wasserman,et al. Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.
[9] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[10] K. Kamatani,et al. Multilevel particle filter , 2015 .
[11] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[12] Kody J. H. Law,et al. Multilevel sequential Monte Carlo: Mean square error bounds under verifiable conditions , 2017 .
[13] P. Moral,et al. A nonasymptotic theorem for unnormalized Feynman-Kac particle models , 2011 .
[14] Richard Bellman,et al. Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.
[15] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[16] Peter W. Glynn,et al. Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..
[17] J. E. Walstrom,et al. Evaluating Uncertainty in Engineering Calculations , 1967 .
[18] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[19] Adrian E. Raftery,et al. Bayesian Model Averaging: A Tutorial , 2016 .
[20] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[21] Yan Zhou,et al. Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2016 .
[22] T. J. Dodwell,et al. A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.
[23] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[24] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[25] Stig Larsson,et al. Introduction to stochastic partial differential equations , 2008 .
[26] Omar M. Knio,et al. Introduction: Uncertainty Quantification and Propagation , 2010 .
[27] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[28] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[29] A. Beskos,et al. Multilevel sequential Monte Carlo samplers , 2015, 1503.07259.
[30] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[31] Nikolaus Schweizer. Non-asymptotic Error Bounds for Sequential MCMC and Stability of Feynman-Kac Propagators , 2012, 1204.2382.
[32] A. M. Johansen,et al. Towards Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2013, 1303.3123.