Anti-reflective coatings: A critical, in-depth review

Anti-reflective coatings (ARCs) have evolved into highly effective reflectance and glare reducing components for various optical and opto-electrical equipments. Extensive research in optical and biological reflectance minimization as well as the emergence of nanotechnology over the years has contributed to the enhancement of ARCs in a major way. In this study the prime objective is to give a comprehensive idea of the ARCs right from their inception, as they were originally conceptualized by the pioneers and lay down the basic concepts and strategies adopted to minimize reflectance. The different types of ARCs are also described in greater detail and the state-of-the-art fabrication techniques have been fully illustrated. The inspiration that ARCs derive from nature (‘biomimetics’) has been an area of major research and is discussed at length. The various materials that have been reportedly used in fabricating the ARCs have also been brought into sharp focus. An account of application of ARCs on solar cells and modules, contemporary research and associated challenges are presented in the end to facilitate a universal understanding of the ARCs and encourage future research.

[1]  Shih-Yuan Lu,et al.  A facile route to create surface porous polymer films via phase separation for antireflection applications. , 2009, ACS applied materials & interfaces.

[2]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[3]  G. A. Neuman,et al.  Anti-reflective coatings by APCVD using graded index layers , 1997 .

[4]  D. Partlow,et al.  Formation of broad band antireflective coatings on fused silica for high power laser applications , 1985 .

[5]  Tom J. Smy,et al.  Modelling and characterization of columnar growth in evaporated films , 1993 .

[6]  Lijie Ci,et al.  Experimental observation of an extremely dark material made by a low-density nanotube array. , 2008, Nano letters.

[7]  H. Dislich,et al.  Anti-reflecting light-scattering coatings via the sol-gel-procedure , 1986 .

[8]  Yoshiaki Kanamori,et al.  Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks , 2006 .

[9]  Akhlesh Lakhtakia,et al.  Engineered sculptured nematic thin films , 1997 .

[10]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[11]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[12]  F. H. Nicoll,et al.  Properties of Low Reflection Films Produced by the Action of Hydrofluoric Acid Vapor , 1943 .

[13]  Jason D. Fowlkes,et al.  Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres , 2000 .

[14]  Mu Shik Jhon,et al.  BOND DENSITY AND PHYSICOCHEMICAL PROPERTIES OF A HYDROGENATED SILICON-NITRIDE FILM , 1995 .

[15]  M. Brett,et al.  Porous broadband antireflection coating by glancing angle deposition. , 2003, Applied optics.

[16]  Mikael Karlsson,et al.  Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. , 2003, Optics express.

[17]  Taher Daud,et al.  Front surface passivation of silicon solar cells with antireflection coating , 1987 .

[18]  Chang-Pin Chou,et al.  Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process , 2008 .

[19]  Bryce S. Richards,et al.  Enhancing the surface passivation of TiO2 coated silicon wafers , 2002 .

[20]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[21]  Loucas Tsakalakos,et al.  Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II , 2010 .

[22]  I. Thomas,et al.  High laser damage threshold porous silica antireflective coating. , 1986, Applied optics.

[23]  W H Southwell,et al.  Antireflection surfaces in silicon using binary optics technology. , 1992, Applied optics.

[24]  Bhushan Sopori,et al.  Silicon nitride processing for control of optical and electronic properties of silicon solar cells , 2003 .

[25]  Peng Jiang,et al.  Bioinspired broadband antireflection coatings on GaSb , 2008 .

[26]  Daniel Poitras,et al.  Plasma deposition of optical films and coatings: A review , 2000 .

[27]  A. G. Emslie,et al.  Exact computation of the reflectance of a surface layer of arbitrary refractive-index profile and an approximate solution of the inverse problem , 1982 .

[28]  Christoph J. Brabec,et al.  Performance improvement of organic solar cells with moth eye anti-reflection coating , 2008 .

[29]  John C. Miller Reflection Efficiencies of a Periodic Absorbing Surface , 1964 .

[30]  Eric Mazur,et al.  Near-unity below-band-gap absorption by microstructured silicon , 2001 .

[31]  J N Mait,et al.  Broadband Antireflective Properties of Inverse Motheye Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[32]  Norbert Kaiser,et al.  NANO-motheye antireflection pattern by plasma treatment of polymers , 2005 .

[33]  Yoji Saito,et al.  Honeycomb-textured structures on crystalline silicon surfaces for solar cells by spontaneous dry etching with chlorine trifluoride gas , 2007 .

[34]  W. M. Lynch Plaster processing dynamics , 1995 .

[35]  Michael T. Gale,et al.  Diffraction, beauty and commerce , 1989 .

[36]  Hisao Kikuta,et al.  Fabrication of Microcone Array for Antireflection Structured Surface Using Metal Dotted Pattern , 2001 .

[37]  Bruce E. Gnade,et al.  Visible photoluminescence from porous Si formed by annealing and chemically etching amorphous Si , 1992 .

[38]  E. Mazur,et al.  Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses , 2001, CLEO 2001.

[39]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[40]  U. Steiner,et al.  Nanophase-separated polymer films as high-performance antireflection coatings , 1999, Science.

[41]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[42]  Zhao Li,et al.  Picosecond Pulse Laser Microstructuring of Silicon , 2003 .

[43]  P. Campbell,et al.  Enhancement of light absorption from randomizing and geometric textures , 1993 .

[44]  Alan J. Hurd,et al.  Fundamentals of sol-gel dip-coating , 1994 .

[45]  S. K. Case,et al.  Optical elements with ultrahigh spatial-frequency surface corrugations. , 1983, Applied optics.

[46]  Daniel C. Harris,et al.  Materials for Infrared Windows and Domes: Properties and Performance , 1999 .

[47]  Peichen Yu,et al.  Broadband and omnidirectional antireflection employing disordered GaN nanopillars. , 2008, Optics express.

[48]  Won Seok Choi,et al.  The effect of annealing on the properties of diamond-like carbon protective antireflection coatings , 2008 .

[49]  E. Fred Schubert,et al.  Performance of Antireflection Coatings Consisting of Multiple Discrete Layers and Comparison with Continuously Graded Antireflection Coatings , 2010 .

[50]  Takayuki Hoshino,et al.  Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure , 2004 .

[51]  C. Bernhard,et al.  Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function , 1970, Zeitschrift für vergleichende Physiologie.

[52]  Zhenlin Wang,et al.  Reflectivity behavior of two-dimensional ordered array of metallodielectric composite particles at large incidence angles , 2005 .

[53]  P. Campbell,et al.  Light trapping in textured solar cells , 1990 .

[54]  H. Hattori,et al.  Anti‐Reflection Surface with Particle Coating Deposited by Electrostatic Attraction , 2001 .

[55]  Alison M. Sweeney,et al.  Insect communication: Polarized light as a butterfly mating signal , 2003, Nature.

[56]  Ajeet Rohatgi,et al.  A new texturing geometry for producing high efficiency solar cells with no antireflection coatings , 1993 .

[57]  B. L. Sopori,et al.  Reflection characteristics of textured polycrystalline silicon substrates for solar cells , 1988 .

[58]  M. Rubner,et al.  Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers , 2002, Nature materials.

[59]  Yoshiaki Kanamori,et al.  Antireflection sub-wavelength gratings fabricated by spin-coating replication , 2005 .

[60]  Y. Wang,et al.  Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres , 2009 .

[61]  Michael Jay Minot,et al.  Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ , 1976 .

[62]  Kevin Robbie,et al.  Advanced techniques for glancing angle deposition , 1998 .

[63]  Paul Osbond,et al.  Plasma sprayed anti-reflection coatings for microwave optical components , 1992 .

[64]  M. J. Brett,et al.  Sculptured thin films and glancing angle deposition: Growth mechanics and applications , 1997 .

[65]  Kamarulazizi Ibrahim,et al.  The effect of porosity on the properties of silicon solar cell , 2010 .

[66]  Penghui Ma,et al.  Toward perfect antireflection coatings: numerical investigation. , 2002, Applied optics.

[67]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[68]  Lifeng Chi,et al.  Biomimetic antireflective Si nanopillar arrays. , 2008, Small.

[69]  Shuichi Kinoshita,et al.  Photophysics of Structural Color in the Morpho Butterflies , 2002 .

[70]  Alain Fave,et al.  Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching , 2006 .

[71]  Donald M. Tennant,et al.  Textured surfaces: Optical storage and other applications , 1982 .

[72]  Thad Druffel,et al.  Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter , 2006, Nanotechnology.

[73]  C. Bernhard,et al.  Structural and functional adaptation in a visual system - Strukturelle und funktionelle Adaptation in einem visuellen System , 1967 .

[74]  S. Boden,et al.  Bio-Mimetic Subwavelength Surfaces for Near-Zero Reflection Sunrise to Sunset , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[75]  F. H. Nicoll,et al.  Anomalous Interference Films on Glass by Chemical Treatment , 1952 .

[76]  J. Garnett,et al.  Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II , 1906 .

[77]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[78]  W H Southwell,et al.  Gradient-index antireflection coatings. , 1983, Optics letters.

[79]  E Fred Schubert,et al.  Realization of a near-perfect antireflection coating for silicon solar energy utilization. , 2008, Optics letters.

[80]  T. Gaylord,et al.  Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings. , 1986, Applied optics.

[81]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[82]  F. P. Califano,et al.  Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells , 1997 .

[83]  Heon Lee,et al.  Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography , 2011 .

[84]  Meng-Chi Huang,et al.  Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology , 2008, Nanotechnology.

[85]  Jingtao Zhu,et al.  Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon , 2008 .

[86]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[87]  Plinio Innocenzi,et al.  Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Sol−Gel Coatings: An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells , 2010 .

[88]  Akihiro Yoshida,et al.  Antireflective Nanoprotuberance Array in the Transparent Wing of a Hawkmoth, Cephonodes hylas , 1997 .

[89]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[90]  Volker Wittwer,et al.  Antireflective submicrometer surface-relief gratings for solar applications , 1998 .

[91]  Garikoitz Beobide,et al.  Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices , 2009 .

[92]  Harish Manohara,et al.  A novel silicon nanotips antireflection surface for the micro Sun sensor. , 2005, Nano letters.

[93]  J A Dobrowolski,et al.  Refractive index as a variable in the numerical design of optical thin film systems. , 1982, Applied optics.

[94]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[95]  Tayyab I. Suratwala,et al.  Sol—gel derived coatings on glass , 1997 .

[96]  E. Zayim,et al.  Optical and electrochromic properties of sol–gel made anti-reflective WO3–TiO2 films , 2005 .

[97]  H. Dislich,et al.  History and principles of the sol-gel process, and some new multicomponent oxide coatings , 1982 .

[98]  Andrew R. Parker,et al.  Solar–absorber antireflector on the eye of an Eocene fly (45 Ma) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[99]  Alan B. Harker,et al.  Fabrication and characterization of diamond moth eye antireflective surfaces on Ge , 1992 .

[100]  Philippe M. Fauchet,et al.  Dynamic etching of silicon for broadband antireflection applications , 2002 .

[101]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[102]  Markus Kuhr,et al.  Coatings on plastics with the PICVD technology , 2003 .

[103]  Andreas Tünnermann,et al.  Broadband antireflective surface-relief structure for THz optics. , 2007, Optics express.

[104]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[105]  Ajeet Rohatgi,et al.  Modeling and characterization of interface state parameters and surface recombination velocity at plasma enhanced chemical vapor deposited SiO2–Si interface , 1994 .

[106]  Daniel M. Mittleman,et al.  Imaging and Sensing with Terahertz Radiation , 2005 .

[107]  Young Min Song,et al.  Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles , 2011 .

[108]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[109]  H. W. Lehmann,et al.  Textured silicon: A selective absorber for solar thermal conversion , 1979 .

[110]  Yanchun Han,et al.  Fabrication of polymer antireflective coatings by self-assembly of supramolecular block copolymer , 2010 .

[111]  Irving Langmuir,et al.  Built-Up Films of Barium Stearate and Their Optical Properties , 1937 .

[112]  Heon Lee,et al.  Enhanced transmittance of glass plates for solar cells using nano-imprint lithography , 2010 .

[113]  Mool C. Gupta,et al.  Optical properties of silicon light trapping structures for photovoltaics , 2010 .

[114]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[115]  Martin Schadt,et al.  Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies , 2001, Nature.