What’s on Your Mind: Automatic Intent Modeling for Data Exploration

With the increased generation and availability of big data in different application domains, there is a need for systems that “understand user’s search intents” and “serves data objects” in the background. Search intent is significant objects/topics represents, abstraction of user’s information needs, which a user often fails to, specify in information seeking. Thus, the fundamental search is shifting focus on “Find What You Need and Understand What You Find”. User intention predictions and personalized recommendations are two such methods, to formalize user’s intents. We investigated various information factors, which affect user’s search intentions and how these intents assist in an exploratory search. In particular, we proposed an algorithm for automatic intent modeling (AIM), based on user’s reviews and confidence assessments as search representatives of user’s search intents. In this process, we have revisited various related research efforts and highlighted inherent design issues.

[1]  Cláudio T. Silva,et al.  VisTrails: visualization meets data management , 2006, SIGMOD Conference.

[2]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[3]  Idan Szpektor,et al.  Identifying Web Queries with Question Intent , 2016, WWW.

[4]  Helen J. Wang,et al.  Online aggregation , 1997, SIGMOD '97.

[5]  Prasenjit Mitra,et al.  Query suggestions in the absence of query logs , 2011, SIGIR.

[6]  William S. Cooper,et al.  On selecting a measure of retrieval effectiveness , 1973, J. Am. Soc. Inf. Sci..

[7]  Donald O. Case,et al.  Looking for Information: A Survey of Research on Information Seeking, Needs and Behavior , 2012 .

[8]  Krishna Bharat SearchPad: explicit capture of search context to support Web search , 2000, Comput. Networks.

[9]  Juliana Freire,et al.  Supporting Exploratory Queries in Databases , 2004, DASFAA.

[10]  Tom Wilson,et al.  Models in Information Behavior Research , 1999 .

[11]  Gary Marchionini Information-seeking strategies of novices using a full-text electronic encyclopedia , 1989 .

[12]  Steve Chien,et al.  Semantic similarity between search engine queries using temporal correlation , 2005, WWW '05.

[13]  Lu Wang,et al.  Clustering query refinements by user intent , 2010, WWW '10.

[14]  Craig MacDonald,et al.  Intent-aware search result diversification , 2011, SIGIR.

[15]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[16]  Mark Sanderson,et al.  NRT: News Retrieval Tool , 1991, Electron. Publ..

[17]  Chris Buckley,et al.  Improving automatic query expansion , 1998, SIGIR '98.

[18]  Ryen W. White Interactions with Search Systems , 2016 .

[19]  Elad Yom-Tov,et al.  Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval , 2005, SIGIR '05.

[20]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[21]  Francesco Bonchi,et al.  Query reformulation mining: models, patterns, and applications , 2011, Information Retrieval.

[22]  Nicholas J. Belkin People, Interacting with Information1 , 2016, SIGF.

[23]  Daniel Gayo-Avello,et al.  Survey and evaluation of query intent detection methods , 2009, WSCD '09.

[24]  Moshé M. Zloof Query by example , 1975, AFIPS '75.

[25]  Donna K. Harman,et al.  Towards Interactive Query Expansion , 1988, SIGIR Forum.

[26]  Hugh E. Williams,et al.  Query expansion using associated queries , 2003, CIKM '03.

[27]  Gary Marchionini,et al.  Search history support for finding and using information: User interface design recommendations from a user study , 2007, Inf. Process. Manag..

[28]  Neoklis Polyzotis,et al.  Query Recommendations for Interactive Database Exploration , 2009, SSDBM.

[29]  Dorota Glowacka,et al.  Directing exploratory search with interactive intent modeling , 2013, CIKM.

[30]  Ryen W. White,et al.  Supporting exploratory search , 2006 .

[31]  Evaggelia Pitoura,et al.  YmalDB: exploring relational databases via result-driven recommendations , 2013, The VLDB Journal.

[32]  Didier Dubois,et al.  Using fuzzy sets in flexible querying: why and how? , 1997 .

[33]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[34]  Abdigani Diriye,et al.  The future is in the past: designing for exploratory search , 2012, IIiX.

[35]  T. D. Wilson,et al.  Models in information behaviour research , 1999, J. Documentation.

[36]  Wei Chu,et al.  Learning to Recommend Related Entities to Search Users , 2015, WSDM.

[37]  Gene Golovchinsky,et al.  Queries? Links? Is there a difference? , 1997, CHI.

[38]  Nicholas J. Belkin,et al.  An exploration of the relationships between work task and interactive information search behavior , 2010 .

[39]  Daniel E. Rose,et al.  Understanding user goals in web search , 2004, WWW '04.

[40]  Olga Papaemmanouil,et al.  Explore-by-example: an automatic query steering framework for interactive data exploration , 2014, SIGMOD Conference.

[41]  Anselm Spoerri How visual query tools can support users searching the Internet , 2004 .

[42]  Srinivasan Parthasarathy,et al.  Query by output , 2009, SIGMOD Conference.

[43]  Benjamin Rey,et al.  Generating query substitutions , 2006, WWW '06.

[44]  Nick Koudas,et al.  Interactive query refinement , 2009, EDBT '09.

[45]  Ryen W. White,et al.  Exploratory Search: Beyond the Query-Response Paradigm , 2009, Exploratory Search: Beyond the Query-Response Paradigm.