Randomness-Efficient Sampling within NC1

Abstract.We construct a randomness-efficient averaging sampler that is computable by uniform constant-depth circuits with parity gates (i.e., in uniform AC0[⊕]). Our sampler matches the parameters achieved by random walks on constant-degree expander graphs, allowing us to apply a variety expander-based techniques within NC1. For example, we obtain the following results: Randomness-efficient error-reduction for uniform probabilistic NC1, TC0, AC0[⊕] and AC0:Any function computable by uniform probabilistic circuits with error 1/3 using r random bits is computable by circuits of the same type with error δ using r + O(log(1/δ)) random bits.An optimal bitwise ϵ-biased generator in AC0[⊕]: There exists a 1/2Ω(n)-biased generator G : {0, 1}O(n) → {0, 1}2n for which poly(n)-size uniform AC0[⊕] circuits can compute G(s)i given (s, i) ∈ {0, 1}O(n)  ×  {0, 1}n. This resolves question raised by Gutfreund and Viola (Random 2004).uniform BP · AC0 ⊆ uniform AC0/O(n). Our sampler is based on the zig-zag graph product of Reingold, Vadhan & Wigderson (Annals of Math 2002) and as part of our analysis we givean elementary proof of a generalization of Gillman’s Chernoff Bound for Expander Walks (SIAM Journal on Computing 1998).

[1]  Optimal Hoeffding bounds for discrete reversible Markov chains , 2004, math/0405296.

[2]  Avi Wigderson,et al.  A randomness-efficient sampler for matrix-valued functions and applications , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[3]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[4]  Leonid A. Levin,et al.  Security preserving amplification of hardness , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[5]  Ran Canetti,et al.  Lower Bounds for Sampling Algorithms for Estimating the Average , 1995, Inf. Process. Lett..

[6]  Avi Wigderson,et al.  Dispersers, deterministic amplification, and weak random sources , 1989, 30th Annual Symposium on Foundations of Computer Science.

[7]  David Zuckerman Randomness-optimal oblivious sampling , 1997, Random Struct. Algorithms.

[8]  M. Murty Ramanujan Graphs , 1965 .

[9]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[10]  Miklós Ajtai,et al.  Approximate Counting with Uniform Constant-Depth Circuits , 1990, Advances In Computational Complexity Theory.

[11]  Avi Wigderson,et al.  Deterministic amplification of space-bounded probabilistic algorithms , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[12]  Nabil Kahale Large Deviation Bounds for Markov Chains , 1997, Comb. Probab. Comput..

[13]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[14]  Noam Nisan,et al.  The computational complexity of universal hashing , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[15]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[16]  Michael Ben-Or,et al.  A theorem on probabilistic constant depth Computations , 1984, STOC '84.

[17]  N. Alon,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .

[18]  Milena Mihail,et al.  Conductance and convergence of Markov chains-a combinatorial treatment of expanders , 1989, 30th Annual Symposium on Foundations of Computer Science.

[19]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[20]  Heribert Vollmer,et al.  Introduction to Circuit Complexity , 1999, Texts in Theoretical Computer Science An EATCS Series.

[21]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[22]  Lance Fortnow,et al.  Linear Advice for Randomized Logarithmic Space , 2006, STACS.

[23]  Mihir Bellare,et al.  Randomness in interactive proofs , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[24]  Emanuele Viola,et al.  The complexity of constructing pseudorandom generators from hard functions , 2005, computational complexity.

[25]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[26]  Michael Saks omization and Derandomization in Space-Bounded Computation , 1996 .

[27]  Oded Goldreich,et al.  Modern Cryptography, Probabilistic Proofs and Pseudorandomness , 1998, Algorithms and Combinatorics.

[28]  A. Wigderson,et al.  ENTROPY WAVES, THE ZIG-ZAG GRAPH PRODUCT, AND NEW CONSTANT-DEGREE , 2004, math/0406038.

[29]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[30]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[31]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[32]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[33]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[34]  Emanuele Viola,et al.  Fooling Parity Tests with Parity Gates , 2004, APPROX-RANDOM.

[35]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[36]  Alexander Healy Randomness-Efficient Sampling Within NC1 , 2006, APPROX-RANDOM.

[37]  Emanuele Viola,et al.  Constant-Depth Circuits for Arithmetic in Finite Fields of Characteristic Two , 2006, STACS.

[38]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[39]  Oded Goldreich,et al.  A Sample of Samplers - A Computational Perspective on Sampling (survey) , 1997, Electron. Colloquium Comput. Complex..

[40]  Avi Wigderson,et al.  Derandomizing the AW matrix-valued Chernoff bound using pessimistic estimators and applications , 2006, Electron. Colloquium Comput. Complex..

[41]  Emanuele Viola,et al.  Pseudorandom bits for constant depth circuits with few arbitrary symmetric gates , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[42]  János Komlós,et al.  Deterministic simulation in LOGSPACE , 1987, STOC.

[43]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[44]  I. Dinwoodie A Probability Inequality for the Occupation Measure of a Reversible Markov Chain , 1995 .

[45]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[46]  Russell Impagliazzo,et al.  How to recycle random bits , 1989, 30th Annual Symposium on Foundations of Computer Science.

[47]  P. Lezaud Chernoff-type bound for finite Markov chains , 1998 .

[48]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[49]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[50]  Ronen Shaltiel,et al.  Recent Developments in Explicit Constructions of Extractors , 2002, Bull. EATCS.