Time-dependent mechanical response of a composite PFSA membrane

Abstract The mechanical response of a composite fuel cell membrane, made from layers of reinforced and unreinforced PFSA material, is investigated via both experimental and numerical means. First, the time-dependent mechanical properties for the reinforced layers are measured for a range of environmental and loading conditions. A three-network, viscoelastic-plastic constitutive model is developed to characterize the mechanical response of this reinforced membrane material. This constitutive model is then used in finite element simulations of a fuel cell unit (consisting of composite membrane, electrodes, gas diffusion layer and bipolar plates) where the effect of relative humidity (RH) cycling on the stress response of the composite membrane is investigated. Using numerical simulations, various layering configurations for the composite membrane and different load cases are studied. The investigation provides insight into the stress response of the membrane and suggests possible configurations that may improve the effective membrane life.

[1]  Yeh-Hung Lai,et al.  Chapter 2 – Membrane Durability: Physical and Chemical Degradation , 2012 .

[2]  M. Santare,et al.  An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane , 2012 .

[3]  S. Srinivasan,et al.  A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes , 2003, physics/0310029.

[4]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  Michael H. Santare,et al.  An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane , 2006 .

[6]  Michael H. Santare,et al.  Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells , 2010 .

[7]  David A. Dillard,et al.  Evaluating the time and temperature dependent biaxial strength of Gore-Select ® series 57 proton exchange membrane using a pressure loaded blister test , 2010 .

[8]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[9]  W. B. Johnson,et al.  Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses , 2007 .

[10]  Keonkuk Kim,et al.  Zirconium phosphate sulfonated poly (fluorinated arylene ether)s composite membranes for PEMFCs at 100–140 °C , 2006 .

[11]  Michael H. Santare,et al.  Stress-Strain Behavior of Perfluorosulfonic Acid Membranes at Various Temperatures and Humidities: Experiments and Phenomenological Modeling , 2009 .

[12]  David A. Dillard,et al.  Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling , 2009 .

[13]  M. Santare,et al.  Effect of Time-Dependent Material Properties on the Mechanical Behavior of PFSA Membranes Subjected to Humidity Cycling , 2012 .

[14]  G. Jung,et al.  Nafion/PTFE Composite Membranes for Fuel Cell Applications , 2004 .

[15]  J. Mcgrath,et al.  Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells , 2006 .

[16]  S. Cleghorn,et al.  Effect of Relative Humidity on Membrane Durability in PEM Fuel Cells , 2006 .

[17]  Andrew B. Bocarsly,et al.  Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells , 2006 .

[18]  Paola Costamagna,et al.  Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , 2001 .

[19]  L. Treloar,et al.  Stresses and Birefringence in Rubber subjected to General Homogeneous Strain , 1948 .

[20]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[21]  John P. Kopasz,et al.  DOE Fuel Cell Program: Durability Technical Targets and Testing Protocols , 2007 .

[22]  J. C. Cross,et al.  Effect of gas diffusion layer modulus and land–groove geometry on membrane stresses in proton exchange membrane fuel cells , 2011 .

[23]  W. B. Johnson,et al.  Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle , 2006 .

[24]  E. Chalkova,et al.  Effect of TiO2 Surface Properties on Performance of Nafion-Based Composite Membranes in High Temperature and Low Relative Humidity PEM Fuel Cells , 2005 .

[25]  Michael H. Santare,et al.  Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading , 2006 .

[26]  Fuqiang Liu,et al.  Nafion/PTFE Composite Membranes for Fuel Cell Applications , 2003 .

[27]  David A. Dillard,et al.  Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters , 2009 .

[28]  Fang Wang,et al.  A mechanical durability comparison of various perfluocarbon proton exchange membranes , 2008 .

[29]  F. Büchi,et al.  Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells , 2001 .

[30]  G. Scherer,et al.  PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants , 1998 .

[31]  B. Yi,et al.  Carbon nanotubes reinforced nafion composite membrane for fuel cell applications , 2006 .

[32]  Michael A. Hickner,et al.  Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications , 2003 .

[33]  T. W. Sherman,et al.  A polymer electrolyte fuel cell life test: 3 years of continuous operation , 2006 .

[34]  David A. Dillard,et al.  Hygrothermal characterization of the viscoelastic properties of Gore-Select® 57 proton exchange membrane , 2008 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Michael H. Santare,et al.  Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells , 2008 .

[37]  P. Fedkiw,et al.  Nafion®-based composite polymer electrolyte membranes , 1998 .