Granular aluminium as a superconducting material for high-impedance quantum circuits

[1]  Joseph P. Heremans,et al.  Atomic layer deposition of titanium nitride for quantum circuits , 2018, Applied Physics Letters.

[2]  A. Houck,et al.  Nanowire Superinductance Fluxonium Qubit. , 2018, Physical review letters.

[3]  F. Hassler,et al.  Dual Shapiro steps of a phase-slip junction in the presence of a parasitic capacitance , 2018, Physical Review B.

[4]  I. Pop,et al.  Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum. , 2018, Physical review letters.

[5]  W. Wernsdorfer,et al.  Circuit quantum electrodynamics of granular aluminum resonators , 2018, Nature Communications.

[6]  J. Bylander,et al.  High Kinetic Inductance NbN Nanowire Superinductors , 2018, Physical Review Applied.

[7]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[8]  J. Koski,et al.  Coherent spin–photon coupling using a resonant exchange qubit , 2017, Nature.

[9]  T. Klapwijk,et al.  Hybrid rf SQUID qubit based on high kinetic inductance , 2017, Scientific Reports.

[10]  F. Jin,et al.  Gate-error analysis in simulations of quantum computers with transmon qubits , 2017, 1709.06600.

[11]  A. Houck,et al.  Coherence properties of the 0-π qubit , 2017, 1708.02886.

[12]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[13]  D. Schuster,et al.  Realization of a Λ System with Metastable States of a Capacitively Shunted Fluxonium. , 2017, Physical review letters.

[14]  V. Manucharyan,et al.  Demonstration of Protection of a Superconducting Qubit from Energy Decay. , 2017, Physical review letters.

[15]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[16]  N. Didier,et al.  Charge- and Flux-Insensitive Tunable Superconducting Qubit , 2017, 1703.04613.

[17]  Akira Endo,et al.  Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (2) - light dynamics and light-matter entanglement - , 2017 .

[18]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling , 2016, Nature Communications.

[19]  K. Dodge,et al.  Phonon-mediated quasiparticle poisoning of superconducting microwave resonators , 2016, 1610.09351.

[20]  R. T. Brierley,et al.  Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment , 2016, 1610.01094.

[21]  R. Barends,et al.  Chiral ground-state currents of interacting photons in a synthetic magnetic field , 2016, Nature Physics.

[22]  Clare C. Yu,et al.  Origin and Reduction of 1 / f Magnetic Flux Noise in Superconducting Devices , 2016, 1604.00877.

[23]  G. Deutscher,et al.  Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins , 2016 .

[24]  L. Frunzio,et al.  Simultaneous Monitoring of Fluxonium Qubits in a Waveguide , 2016, Physical Review Applied.

[25]  L. Frunzio,et al.  Quantization of inductively shunted superconducting circuits , 2016, 1602.01793.

[26]  L. Frunzio,et al.  Fluxonium-resonator system in the nonperturbative regime , 2016 .

[27]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[28]  G. Deutscher,et al.  Shaping a superconducting dome: Enhanced Cooper-pairing versus suppressed phase coherence in coupled aluminum nanograins , 2015, 1508.04270.

[29]  T. Kontos,et al.  Coherent coupling of a single spin to microwave cavity photons , 2015, Science.

[30]  M. Weides,et al.  Aluminium-oxide wires for superconducting high kinetic inductance circuits , 2014 .

[31]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[32]  M. Devoret,et al.  Microwave characterization of Josephson junction arrays: implementing a low loss superinductance. , 2012, Physical review letters.

[33]  S. Girvin,et al.  Decoherence of superconducting qubits caused by quasiparticle tunneling , 2012, 1207.7084.

[34]  A. Kitaev,et al.  Quantum superinductor with tunable nonlinearity. , 2012, Physical review letters.

[35]  B. Johnson,et al.  Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit. , 2011, Physical review letters.

[36]  Olivier Buisson,et al.  Junction fabrication by shadow evaporation without a suspended bridge , 2011, Nanotechnology.

[37]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[38]  D. Haviland,et al.  Phase-charge duality of a josephson junction in a fluctuating electromagnetic environment. , 2005, Physical review letters.

[39]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[40]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[41]  G. J. Dolan,et al.  Offset masks for lift‐off photoprocessing , 1977 .

[42]  W. Marsden I and J , 2012 .

[43]  G. Deutscher,et al.  Transition to zero dimensionality in granular aluminum superconducting films , 1973 .

[44]  and as an in , 2022 .