Deja Vol: Predictive Regressions for Aggregate Stock Market Volatility Using Macroeconomic Variables

Aggregate stock return volatility is both persistent and countercyclical. This paper tests whether it is possible to improve volatility forecasts at monthly and quarterly horizons by conditioning on additional macroeconomic variables. I find that several variables related to macroeconomic uncertainty, time-varying expected stock returns, and credit conditions Granger cause volatility. It is more difficult to find evidence that forecasts exploiting macroeconomic variables outperform a univariate benchmark out-of-sample. The most successful approaches involve simple combinations of individual forecasts. Predictive power associated with macroeconomic variables appears to concentrate around the onset of recessions.

[1]  J. Stock,et al.  Combination forecasts of output growth in a seven-country data set , 2004 .

[2]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[3]  Frank T. Magiera,et al.  There Is a Risk–Return Trade-Off After All , 2005 .

[4]  Sydney C. Ludvigson,et al.  Measuring and modeling varia-tion in the risk-return tradeoff , 2005 .

[5]  Arturo Estrella,et al.  The term structure as a predictor of real economic activity , 1991 .

[6]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[7]  James G. MacKinnon,et al.  Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests , 1994 .

[8]  S. B. Thompson,et al.  Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? , 2008 .

[9]  Federico Nardari,et al.  Time-varying short-horizon predictability ☆ , 2011 .

[10]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[11]  P. Veronesi,et al.  What Ties Return Volatilities to Price Valuations and Fundamentals? , 2009, Journal of Political Economy.

[12]  A. Melé Understanding Stock Market Volatility A Business Cycle Perspective , 2008 .

[13]  Marno Verbeek,et al.  The Economic Value of Predicting Stock Index Returns and Volatility , 2001, Journal of Financial and Quantitative Analysis.

[14]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[15]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[16]  Guofu Zhou,et al.  Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy , 2009 .

[17]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[18]  Michael J. Brennan,et al.  Stock price volatility and equity premium , 2001 .

[19]  E. Ghysels,et al.  There is a Risk-Return Tradeoff after All , 2004 .

[20]  L. Glosten,et al.  Economic Significance of Predictable Variations in Stock Index Returns , 1989 .

[21]  H. Shin,et al.  Liquidity and Leverage , 2009 .

[22]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[23]  A. Melé Asymmetric stock market volatility and the cyclical behavior of expected returns , 2007 .

[24]  N. Shephard,et al.  Realized Kernels in Practice: Trades and Quotes , 2009 .

[25]  Campbell R. Harvey The Specification of Conditional Expectations , 1991 .

[26]  W. Torous,et al.  On Predicting Stock Returns with Nearly Integrated Explanatory Variables , 2004 .

[27]  Francis X. Diebold,et al.  Real-Time Measurement of Business Conditions , 2007 .

[28]  Jussi Tolvi,et al.  Modeling Financial Time Series with S‐Plus , 2003 .

[29]  J. Cochrane Production‐Based Asset Pricing and the Link Between Stock Returns and Economic Fluctuations , 1991 .

[30]  P. Veronesi Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model , 1999 .

[31]  Jan Korbel,et al.  Modeling Financial Time Series , 2013 .

[32]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[33]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[34]  Sydney C. Ludvigson,et al.  Measuring and Modelling Variation in the Risk-Return Trade-Off , 2001 .

[35]  R. Stambaugh,et al.  Predictive Regressions , 1999 .

[36]  Sydney C. Ludvigson,et al.  The Empirical Risk-Return Relation: A Factor Analysis Approach , 2005 .

[37]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[38]  Jay Shanken,et al.  Intertemporal asset pricing: An Empirical Investigation , 1990 .

[39]  Markus K. Brunnermeier,et al.  Market Liquidity and Funding Liquidity , 2005 .

[40]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[41]  J. Campbell Stock Returns and the Term Structure , 1985 .

[42]  Ravi Bansal,et al.  Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles , 2000 .

[43]  M. Lettau,et al.  Reconciling the Return Predictability EvidenceThe Review of Financial Studies: Reconciling the Return Predictability Evidence , 2008 .

[44]  M. Spiegel Forecasting the Equity Premium: Where We Stand Today , 2008 .

[45]  R. Engle,et al.  The Spline-Garch Model for Low Frequency Volatility and its Global Macroeconomic Causes , 2006 .

[46]  Sean D. Campbell,et al.  Stock Returns and Expected Business Conditions: Half a Century of Direct Evidence , 2005 .

[47]  K. French,et al.  Expected stock returns and volatility , 1987 .

[48]  Angus Deaton,et al.  Consumption , Aggregate Wealth , and Expected Stock Returns , 2008 .

[49]  Chris Kirby,et al.  The Economic Value of Volatility Timing Using 'Realized' Volatility , 2001 .

[50]  Stijn Van Nieuwerburgh,et al.  Reconciling the Return Predictability Evidence , 2006 .

[51]  Todd E. Clark,et al.  Approximately Normal Tests for Equal Predictive Accuracy in Nested Models , 2005 .

[52]  Chris Kirby,et al.  The economic value of volatility timing using “realized” volatility ☆ , 2003 .

[53]  Robert F. Whitelaw Time Variations and Covariations in the Expectation and Volatility of Stock Market Returns , 1994 .

[54]  A. Timmermann Excess Volatility and Predictability of Stock Prices in Autoregressive Dividend Models with Learning , 1996 .

[55]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[56]  Allan Timmermann,et al.  How Learning in Financial Markets Generates Excess Volatility and Predictability in Stock Prices , 1993 .

[57]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[58]  R. Engle,et al.  On the Economic Sources of Stock Market Volatility , 2008 .