An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem
暂无分享,去创建一个
Roland Glowinski | Alexandre Caboussat | Victoria Pons | R. Glowinski | A. Caboussat | Victoria Pons
[1] Roland Glowinski,et al. Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach , 2003 .
[2] R. Glowinski,et al. An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .
[3] Roland Glowinski,et al. On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .
[4] R. Glowinski,et al. Large Displacement Calculations of Flexible Pipelines by Finite Element and Nonlinear Programming Methods , 1980 .
[5] Pierre Saramito,et al. An adaptive finite element method for viscoplastic fluid flows in pipes , 2001 .
[6] Roland Glowinski,et al. Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .
[7] G. Talenti,et al. Best constant in Sobolev inequality , 1976 .
[8] Numerical computation of least constants for the Sobolev inequality , 1986 .
[9] B. Kawohl,et al. DIRICHLET PROBLEMS FOR THE 1-LAPLACE OPERATOR, INCLUDING THE EIGENVALUE PROBLEM , 2007 .
[10] ANTONIN CHAMBOLLE,et al. An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.
[11] Anthony Wachs,et al. Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods , 2007 .
[12] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[13] R. Glowinski,et al. Solving a non-smooth eigenvalue problem using operator-splitting methods , 2007, Int. J. Comput. Math..
[14] Bernhard Kawohl,et al. Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant , 2003 .
[15] K. Miller,et al. Elliptic versus Parabolic Regularization for the Equation of Prescribed Mean Curvature , 1997 .
[16] B. M. Fulk. MATH , 1992 .
[17] G. Huisken,et al. The inverse mean curvature flow and the Riemannian Penrose Inequality , 2001 .
[18] Guy Gilboa,et al. Nonlinear Inverse Scale Space Methods for Image Restoration , 2005, VLSM.
[19] G. Carlier,et al. APPROXIMATION OF MAXIMAL CHEEGER SETS BY PROJECTION , 2009 .
[20] FRANÇOISE DIBOS,et al. Global Total Variation Minimization , 1999, SIAM J. Numer. Anal..
[21] Tony F. Chan,et al. Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .
[22] T. O’Neil. Geometric Measure Theory , 2002 .
[23] J. K. Hunter,et al. Measure Theory , 2007 .
[24] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[25] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[26] On the best Sobolev inequality , 1999 .
[27] B. Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities , 2000 .
[28] Roland Glowinski,et al. Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution , 2000, Numer. Linear Algebra Appl..
[29] Vicent Caselles,et al. Explicit Solutions of the Eigenvalue Problem -div(Du/|Du|)=u in R2 , 2005, SIAM J. Math. Anal..
[30] S. Hughes,et al. Computing inspirals in Kerr in the adiabatic regime: I. The scalar case , 2005, gr-qc/0505075.
[32] Thomas H. Dawson,et al. Problems in Plasticity , 1976 .
[33] Karl Kunisch,et al. Denoising of Smooth Images Using L1-Fitting , 2005, Computing.
[34] Roger Temam,et al. Mathematical Problems in Plasticity , 1985 .
[35] Andreas Prohl,et al. Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity , 2007, Numerische Mathematik.
[36] R. Glowinski,et al. Numerical Analysis of Variational Inequalities , 1981 .
[37] Reuven Segev. Load capacity of bodies , 2005 .
[38] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[39] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[40] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[41] A. Caboussat. NUMERICAL METHODS FOR NON-SMOOTH L OPTIMIZATION : APPLICATIONS TO FREE SURFACE FLOWS AND IMAGE DENOISING , 2009 .