An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem

Abstract In this article, we address the numerical solution of a non-smooth eigenvalue problem, which has implications in plasticity theory and image processing. The smallest eigenvalue of the non-smooth operator under consideration is shown to be the same for all bounded, sufficiently smooth, domains in two space dimensions. Piecewise linear finite elements are used for the discretization of eigenfunctions and eigenvalues. An augmented Lagrangian method is proposed for the computation of the minima of the associated non-convex optimization problem. The convergence of finite element approximations of generalized eigenpairs is investigated. Numerical solutions are presented for the first eigenvalue and eigenfunction. For non-simply connected domains, the augmented Lagrangian method also captures larger eigenvalues as local minima. Bifurcation between the first and second eigenvalues is investigated numerically.

[1]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach , 2003 .

[2]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[3]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[4]  R. Glowinski,et al.  Large Displacement Calculations of Flexible Pipelines by Finite Element and Nonlinear Programming Methods , 1980 .

[5]  Pierre Saramito,et al.  An adaptive finite element method for viscoplastic fluid flows in pipes , 2001 .

[6]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[7]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[8]  Numerical computation of least constants for the Sobolev inequality , 1986 .

[9]  B. Kawohl,et al.  DIRICHLET PROBLEMS FOR THE 1-LAPLACE OPERATOR, INCLUDING THE EIGENVALUE PROBLEM , 2007 .

[10]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[11]  Anthony Wachs,et al.  Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods , 2007 .

[12]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[13]  R. Glowinski,et al.  Solving a non-smooth eigenvalue problem using operator-splitting methods , 2007, Int. J. Comput. Math..

[14]  Bernhard Kawohl,et al.  Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant , 2003 .

[15]  K. Miller,et al.  Elliptic versus Parabolic Regularization for the Equation of Prescribed Mean Curvature , 1997 .

[16]  B. M. Fulk MATH , 1992 .

[17]  G. Huisken,et al.  The inverse mean curvature flow and the Riemannian Penrose Inequality , 2001 .

[18]  Guy Gilboa,et al.  Nonlinear Inverse Scale Space Methods for Image Restoration , 2005, VLSM.

[19]  G. Carlier,et al.  APPROXIMATION OF MAXIMAL CHEEGER SETS BY PROJECTION , 2009 .

[20]  FRANÇOISE DIBOS,et al.  Global Total Variation Minimization , 1999, SIAM J. Numer. Anal..

[21]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[22]  T. O’Neil Geometric Measure Theory , 2002 .

[23]  J. K. Hunter,et al.  Measure Theory , 2007 .

[24]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[25]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[26]  On the best Sobolev inequality , 1999 .

[27]  B. Kawohl Symmetry results for functions yielding best constants in Sobolev-type inequalities , 2000 .

[28]  Roland Glowinski,et al.  Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution , 2000, Numer. Linear Algebra Appl..

[29]  Vicent Caselles,et al.  Explicit Solutions of the Eigenvalue Problem -div(Du/|Du|)=u in R2 , 2005, SIAM J. Math. Anal..

[30]  S. Hughes,et al.  Computing inspirals in Kerr in the adiabatic regime: I. The scalar case , 2005, gr-qc/0505075.

[32]  Thomas H. Dawson,et al.  Problems in Plasticity , 1976 .

[33]  Karl Kunisch,et al.  Denoising of Smooth Images Using L1-Fitting , 2005, Computing.

[34]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[35]  Andreas Prohl,et al.  Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity , 2007, Numerische Mathematik.

[36]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[37]  Reuven Segev Load capacity of bodies , 2005 .

[38]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[39]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[40]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[41]  A. Caboussat NUMERICAL METHODS FOR NON-SMOOTH L OPTIMIZATION : APPLICATIONS TO FREE SURFACE FLOWS AND IMAGE DENOISING , 2009 .