Species-dependent energy transfer of surfactant-dispersed semiconducting single-walled carbon nanotubes

Single-walled carbon nanotubes (SWNTs) are stabilized with sodium dodecyl sulfate (SDS) micelles in aqueous solution. Aggregation among semiconducting SWNTs can be identified by exciton energy transfer (EET) features in photoluminescence excitation (PLE) mapping. Addition of o-dichlorobenzene (ODCB) not only changes the micelle structure but also induces the aggregation among SWNT species, leading to drastic changes in the EET features of the ensemble. Force-field and molecular dynamic simulation confirm that SWNT bundles are energetically favorable at room temperature. Observed EET features in PLE mappings are found to be SWNT species-dependent. Moreover, the rapid bundling process induced by ODCB allows us to obtain SWNT bundles which are potentially useful for optical and optoelectronic applications.

[1]  J. Kuo,et al.  Energy Transfer from Photo-Excited Fluorene Polymers to Single-Walled Carbon Nanotubes , 2009 .

[2]  J. Kotthaus,et al.  Photocurrent properties of freely suspended carbon nanotubes under uniaxial strain , 2009, 0905.3952.

[3]  Jacques Lefebvre,et al.  Photoluminescence and Förster Resonance Energy Transfer in Elemental Bundles of Single-Walled Carbon Nanotubes , 2009 .

[4]  Fotios Papadimitrakopoulos,et al.  Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization , 2009, Science.

[5]  H. Dai,et al.  Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes. , 2009, Journal of the American Chemical Society.

[6]  W. Milne,et al.  Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube -Polymer Composites , 2008 .

[7]  Kirk J. Ziegler,et al.  Swelling the micelle core surrounding single-walled carbon nanotubes with water-immiscible organic solvents. , 2008, Journal of the American Chemical Society.

[8]  G. Sáfar,et al.  Optical study of porphyrin-doped carbon nanotubes , 2008 .

[9]  Nobutsugu Minami,et al.  Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors , 2008, 1001.0892.

[10]  R. Hatakeyama,et al.  Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles. , 2008, Journal of the American Chemical Society.

[11]  W. Milne,et al.  Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy , 2008 .

[12]  W. Milne,et al.  Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping , 2008 .

[13]  F. Hennrich,et al.  Photophysics of carbon nanotubes in organic polymer-toluene dispersions: emission and excitation satellites and relaxation pathways , 2008 .

[14]  S. Bachilo,et al.  Electric field quenching of carbon nanotube photoluminescence. , 2008, Nano letters.

[15]  H. Dai,et al.  Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. , 2008, Journal of the American Chemical Society.

[16]  Lukas Novotny,et al.  Exciton energy transfer in pairs of single-walled carbon nanotubes. , 2008, Nano letters.

[17]  Chaiwat Engtrakul,et al.  Protonation effects on the branching ratio in photoexcited single-walled carbon nanotube dispersions. , 2008, Nano letters.

[18]  G. Botton,et al.  Soluble, Discrete Supramolecular Complexes of Single-Walled Carbon Nanotubes with Fluorene-Based Conjugated Polymers , 2008 .

[19]  Chun-Wei Chen,et al.  Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. , 2008, Journal of the American Chemical Society.

[20]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[21]  Bo Wang,et al.  Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. , 2007, Nano letters.

[22]  T. Umeyama,et al.  Photoinduced energy transfer in composites of poly[(p-phenylene-1,2-vinylene)-co-(p-phenylene-1,1-vinylidene)] and single-walled carbon nanotubes , 2007 .

[23]  M. Dresselhaus,et al.  Exciton photophysics of carbon nanotubes. , 2007, Annual review of physical chemistry.

[24]  Lain‐Jong Li,et al.  Temperature and Magnetic Field Dependent Photoluminescence from Carbon Nanotubes , 2007 .

[25]  V. Perebeinos,et al.  Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. , 2007, Nano letters.

[26]  M. Heben,et al.  Selective aggregation of single-walled carbon nanotubes via salt addition. , 2007, Journal of the American Chemical Society.

[27]  D. Milkie,et al.  Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. , 2006, Nano letters.

[28]  M. Dresselhaus,et al.  Photoluminescence intensity of single-wall carbon nanotubes , 2006 .

[29]  A. Jorio,et al.  Direct experimental evidence of exciton-phonon bound states in carbon nanotubes. , 2005, Physical review letters.

[30]  R. Darton,et al.  Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone , 2005 .

[31]  D. Nezich,et al.  Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. , 2005, Physical review letters.

[32]  S. Bachilo,et al.  Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. , 2004, Journal of the American Chemical Society.

[33]  V. C. Moore,et al.  Estimation of Magnetic Susceptibility Anisotropy of Carbon Nanotubes Using Magnetophotoluminescence , 2004 .

[34]  J. Lefebvre,et al.  Temperature-dependent photoluminescence from single-walled carbon nanotubes , 2004 .

[35]  S. Bachilo,et al.  Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot , 2003 .

[36]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[37]  J. F. Stoddart,et al.  Dispersion and Solubilization of Single-Walled Carbon Nanotubes with a Hyperbranched Polymer , 2002 .

[38]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[39]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.