Simulated annealing algorithms and Markov chains with rare transitions
暂无分享,去创建一个
[1] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[2] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[3] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[4] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[5] D. Stroock,et al. Simulated annealing via Sobolev inequalities , 1988 .
[6] D. Stroock,et al. Asymptotics of the spectral gap with applications to the theory of simulated annealing , 1989 .
[7] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[8] J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .
[9] L. Miclo. Evolution de l'énergie libre, applications à l'étude de la convergence des algorithmes du recuit simulé , 1991 .
[10] C. Hwang,et al. Singular perturbed Markov chains and exact behaviors of simulated annealing processes , 1992 .
[11] O. Catoni. Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .
[12] O. Catoni,et al. Exponential triangular cooling schedules for simulated annealing algorithms : A case study , 1992 .
[13] A. Trouvé. Parallélisation massive du recuit simulé , 1993 .
[14] A. Trouvé. Rough Large Deviation Estimates for the Optimal Convergence Speed Exponent of Generalized Simulated , 1994 .
[15] S. Ingrassia. ON THE RATE OF CONVERGENCE OF THE METROPOLIS ALGORITHM AND GIBBS SAMPLER BY GEOMETRIC BOUNDS , 1994 .
[16] J. Deuschel,et al. $L^2$ Convergence of Time Nonhomogeneous Markov Processes: I. Spectral Estimates , 1994 .
[17] Olivier Catoni,et al. Metropolis, Simulated Annealing, and Iterated Energy Transformation Algorithms: Theory and Experiments , 1996, J. Complex..
[18] A. Trouvé. Cycle Decompositions and Simulated Annealing , 1996 .
[19] L. Miclo. Sur les problèmes de sortie discrets inhomogènes , 1996 .
[20] L. Miclo,et al. SUR LES PROBL EMES DE SORTIE DISCRETS INHOMOG ENES , 1996 .
[21] L. Miclo,et al. Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies , 1997 .
[22] O. Catoni,et al. The exit path of a Markov chain with rare transitions , 1997 .
[23] L. Saloff-Coste,et al. Lectures on finite Markov chains , 1997 .
[24] O. Catoni,et al. Piecewise constant triangular cooling schedules for generalized simulated annealing algorithms , 1998 .
[25] O. Catoni. The energy transformation method for the Metropolis algorithm compared with Simulated Annealing , 1998 .
[26] M. Laurent. Sur les temps d'occupations des processus de markov finis inhomogènes à basse température , 1998 .
[27] O. Catoni. Solving Scheduling Problems by Simulated Annealing , 1998 .