Identification of cubic systems using higher order moments of i.i.d. signals

A simple method for estimating the Volterra kernels of cubic systems with a zero-mean i.i.d. input is presented. This method significantly reduces the computational complexity of Volterra kernel estimation compared to the non-i.i.d. and non-Gaussian input case. >

[1]  Edward J. Powers,et al.  A digital method of modeling quadratically nonlinear systems with a general random input , 1988, IEEE Trans. Acoust. Speech Signal Process..

[2]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[3]  David G. Messerschmitt,et al.  Nonlinear Echo Cancellation of Data Signals , 1982, IEEE Trans. Commun..

[4]  Taiho Koh,et al.  Second-order Volterra filtering and its application to nonlinear system identification , 1985, IEEE Trans. Acoust. Speech Signal Process..

[5]  Sergio Benedetto,et al.  Nonlinear Equalization of Digital Satellite Channels , 1982, IEEE J. Sel. Areas Commun..