Nanotube Growth and Characterization

This chapter presents a review of various growth methods for carbon nanotubes. Recent advances in nanotube growth by chemical vapor deposition (CVD) approaches are summarized. CVD methods are promising for producing high quality nanotube materials at large scales. Moreover, controlled CVD growth strategies on catalytically patterned substrates can yield ordered nanotube architectures and integrated devices that are useful for fundamental characterizations and potential applications of nanotube molecular wires.

[1]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[2]  X. B. Zhang,et al.  A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes , 1994, Science.

[3]  Phaedon Avouris,et al.  The effect of structural distortions on the electronic structure of carbon nanotubes , 1998 .

[4]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[5]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[6]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[7]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[8]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[9]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[10]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[11]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[12]  Hongjie Dai,et al.  Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters , 2000 .

[13]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[14]  Marcus,et al.  Gate-Controlled Superconducting Proximity Effect in Carbon Nanotubes. , 1999, Science.

[15]  J. Tersoff Contact resistance of carbon nanotubes , 1999 .

[16]  Spin splitting and even-odd effects in carbon nanotubes , 1998, cond-mat/9804154.

[17]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[18]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[19]  Alan M. Cassell,et al.  Chemical vapor deposition of methane for single-walled carbon nanotubes , 1998 .

[20]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[21]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[22]  Gating individual nanotubes and crosses with scanning probes , 2000 .

[23]  Hongjie Dai,et al.  An Enhanced CVD Approach to Extensive Nanotube Networks with Directionality , 2000 .

[24]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[25]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[26]  M. Dresselhaus,et al.  Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons , 1998 .

[27]  Alan M. Cassell,et al.  Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices , 1999 .

[28]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[29]  R. Baker,et al.  Catalytic growth of carbon filaments , 1989 .

[30]  G. Tibbetts,et al.  An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles , 1987 .

[31]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[32]  P. L. McEuen,et al.  Electrical transport measurements on single-walled carbon nanotubes , 1999 .

[33]  Alan M. Cassell,et al.  Directed Growth of Free-StandingSingle-Walled Carbon Nanotubes , 1999 .

[34]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[35]  Kong,et al.  Controllable reversibility of an sp(2) to sp(3) transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch? , 2000, Physical review letters.

[36]  G. Tibbetts Lengths of carbon fibers grown from iron catalyst particles in natural gas , 1985 .

[37]  Electrical and Mechanical Properties of Twisted Carbon Nanotubes , 1999, cond-mat/9904411.

[38]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[39]  G. Tibbetts Vapor-grown carbon fibers: Status and prospects , 1989 .

[40]  Ming Su,et al.  A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity , 2000 .

[41]  A. Rousset,et al.  Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions , 1999 .

[42]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[43]  Marco Buongiorno Nardelli,et al.  Mechanical deformations and coherent transport in carbon nanotubes , 1999 .

[44]  R. Baker,et al.  Novel materials in heterogeneous catalysis , 1990 .

[45]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[46]  S. Paulson,et al.  In situ resistance measurements of strained carbon nanotubes , 1999, cond-mat/9905304.

[47]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[48]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[49]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[50]  Janos B. Nagy,et al.  Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method , 2000 .

[51]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.