Progress in MOVPE of HgCdTe for advanced infrared detectors

This paper reviews the significant progress made over the past five years in the development of metalorganic vapor phase epitaxy (MOVPE) for the in situ growth of HgCdTe p-n junction devices for infrared detector arrays. The two basic approaches for MOVPE growth of HgCdTe, the interdiffused multilayer process (IMP), and direct alloy growth (DAG) are compared. The paper then focuses on the progress achieved with the IMP approach on lattice-matched CdZnTe substrates. The benefits of the precursors ethyl iodide (EI) and tris-dimethylaminoarsenic (DMAAs) for controlled iodine donor doping and arsenic acceptor doping at dopant concentrations relevant for HgCdTe junction devices are summarized along with the electrical and lifetime properties of n-type and p-type HgCdTe films grown with these precursors. The relative merits of the two CdZnTe substrate orientations we have used, the (211)B and the (100) with 4°–8° misorientation are compared, and the reasons why the (211)B is preferred are discussed. The growth and repeatability results, based on secondary ion mass spectrometry analysis, are reported for a series of double-heterojunction p-n-N-P dual-band HgCdTe films for simultaneous detection in the 3–5 µm and 8–10 µm wavelength bands. Finally, the device characteristics of MOVPE-IMP in situ grown p-on-n heterojunction detectors operating in the 8–12 µm band are reviewed and compared with state-of-the-art liquid phase epitaxial grown devices.

[1]  D. J. Cole-Hamilton,et al.  The role of surface adsorbates in the metalorganic vapor phase epitaxial growth of (Hg,Cd)Te onto (100) GaAs Substrates , 1995 .

[2]  J. Bajaj,et al.  A model of the interdiffused multilayer process , 1996 .

[3]  H. Nishino,et al.  Growth of uniform HgCdTe by metalorganic chemical vapor deposition system , 1992 .

[4]  J. B. Mullin,et al.  A new MOVPE technique for the growth of highly uniform CMT , 1984 .

[5]  F. A. Kröger,et al.  Doping behavior of iodine in Hg0.8Cd0.2Te+ , 1982 .

[6]  M. Reine,et al.  Doping in MOVPE of HgCdTe: orientation effects and growth of high performance IR photodiodes , 1997 .

[7]  C. Summers,et al.  Ethyliodide n‐type doping of Hg1−xCdxTe (x=0.24) grown by metalorganic molecular beam epitaxy , 1994 .

[8]  Hideo Wada,et al.  Orientation dependence of HgCdTe epitaxial layers grown by MOCVD on Si substrates , 1996 .

[9]  D. Edwall Comparison of spatial compositional uniformity and dislocation density for organometallic vapor phase epitaxial Hg1−x CdxTe grown by the direct alloy and interdiffused growth processes , 1993 .

[10]  K. Maruyama,et al.  Iodine doping in mercury cadmium telluride (Hg1−xCdxTe) grown by direct alloy growth using metalorganic chemical vapor deposition , 1993 .

[11]  Tamio Saito,et al.  Growth of (111) HgCdTe on (100) Si by MOVPE using metalorganic tellurium adsorption and annealing , 1996 .

[12]  J. Roberts,et al.  Impurities and metalorganic chemical‐vapor deposition growth of mercury cadmium telluride , 1991 .

[13]  I. Bhat,et al.  Growth of high quality CdTe and ZnTe on Si substrates using organometallic vapor phase epitaxy , 1995 .

[14]  D. Edwall,et al.  Improving material characteristics and reproducibility of MBE HgCdTe , 1997 .

[15]  D. Cole-Hamilton,et al.  Methyl(allyl)telluride as a Te precursor for growth of (Hg,Cd)Te by metalorganic vapour phase epitaxy , 1994 .

[16]  Pradip Mitra,et al.  Metalorganic chemical vapor deposition of HgCdTe p/n junctions using arsenic and iodine doping , 1995 .

[17]  D. Côte,et al.  Hydrogen-acceptor pairing in CdTe epitaxial layers grown by OMVPE , 1993 .

[18]  C. L. Jones,et al.  Growth of fully doped Hg1−xCdxTe heterostructures using a novel iodine doping source to achieve improved device performance at elevated temperatures , 1996 .

[19]  F. C. Case,et al.  MOCVD of bandgap-engineered HgCdTe p-n-N-P dual-band infrared detector arrays , 1997 .

[20]  Larry Wang,et al.  Improved determination of matrix compostion of Hg1−xCdxTe by SIMS , 1997 .

[21]  J. Bajaj,et al.  A study of the growth kinetics of II–VI metalorganic vapour phase epitaxy using in situ laser reflectometry , 1994 .

[22]  F. C. Case,et al.  Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .

[23]  Peter Capper,et al.  Properties of Narrow-Gap Cadmium-Based Compounds , 1995 .

[24]  H. D. Shih,et al.  High‐quality p ‐ type Hg1−xCdxTe prepared by metalorganic chemical vapor deposition , 1995 .

[25]  K. Yong,et al.  The morphology of CdTe deposited by organometallic vapor phase epitaxy: The effect of substrate misorientation , 1997 .

[26]  E. Gertner,et al.  p‐type doping of metalorganic chemical vapor deposition‐grown HgCdTe by arsenic and antimony , 1992 .

[27]  Pradip Mitra,et al.  Improved arsenic doping in metalorganic chemical vapor deposition of HgCdTe andin situ growth of high performance long wavelength infrared photodiodes , 1996 .

[28]  F. Johnson,et al.  Tilted superlattice composition profile determined by photoluminescence and thermal disordering , 1993 .

[29]  David J. Smith,et al.  Growth of high quality CdTe on Si substrates by molecular beam epitaxy , 1996 .

[30]  R. Korenstein,et al.  Indium doping of HgCdTe grown by metalorganic chemical vapor deposition-direct alloy growth using triisopropylindium and diisopropyltellurium triisopropylindium adduct , 1993 .

[31]  J. Mullin,et al.  Metalorganic vapour phase epitaxy of mercury cadmium telluride , 1994 .

[32]  J. Bajaj,et al.  IntegratedIn Situ wafer and system monitoring for the growth of CdTe/ZnTe/GaAs/Si for mercury cadmium telluride epitaxy , 1995 .

[33]  R. F. Risser,et al.  MOCVD grown CdZn Te/GaAs/Si substrates for large-area HgCdTe IRFPAs , 1993 .

[34]  K. Maruyama,et al.  Effect of thin HgTe layers on dislocations in HgCdTe layers on Si substrates , 1996 .

[35]  I. Gale,et al.  Doping studies in MOVPE-grown CdxHg1-xTe , 1993 .

[36]  John E. Jensen,et al.  MBE-grown HgCdTe multi-layer heterojunction structures for high speed low-noise 1.3–1.6 µm avalanche photodetectors , 1997 .

[37]  Ishwara B. Bhat,et al.  Metalorganic vapor phase epitaxyin-situ growth of p-on-n and n-on-p Hg1-xCdxTe junction photodiodes using tertiarybutylarsine as the acceptor source , 1995 .

[38]  E. I. Ko,et al.  Effect of substrate misorientation on surface morphology of homoepitaxial CdTe films grown by organometallic vapor phase epitaxy , 1991 .

[39]  Rajesh D. Rajavel,et al.  Heteroepitaxy of HgCdTe(112) infrared detector structures on Si(112) substrates by molecular-beam epitaxy , 1996 .

[40]  L. O. Bubulac,et al.  Origin of void defects in Hg1−xCdxTe grown by molecular beam epitaxy , 1995 .

[41]  K. Yasuda,et al.  Low temperature growth of (100) HgCdTe layers with DtBTe in metalorganic vapor phase epitaxy , 1995 .

[42]  A. J. Brouns,et al.  Non-contact lifetime screening technique for HgCdTe using transient millimetre-wave reflectance , 1993 .

[43]  J. Bajaj,et al.  A new N-type doping precursor for MOCVD-IMP growth of detector quality MCT , 1993 .

[44]  Ishwara B. Bhat,et al.  Recent advances in the organometallic vapor phase epitaxial growth of HgCdTe by the direct alloy growth process , 1992 .

[45]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of integrated two-color HgCdTe detectors operating in the mid-wave infrared band , 1997 .

[46]  T. Temofonte,et al.  Organometallic vapor‐phase epitaxy of Hg1−xCdxTe on {211}‐oriented substrates , 1992 .

[47]  A. Raizman,et al.  The effect of growth orientation on the morphology, composition, and growth rate of mercury cadmium telluride layers grown by metalorganic vapor phase epitaxy , 1991 .

[48]  F. C. Case,et al.  Donor doping in metalorganic chemical vapor deposition of HgCdTe using ethyl iodide , 1994 .

[49]  S. Moon,et al.  Metalorganic vapor phase epitaxial growth of hillock free (100) solHgCdTeGaAs with good electrical properties , 1996 .