Equations for the elastic constants and their pressure derivatives for three cubic lattices and some geophysical applications

Lattice dynamical considerations and a Born repulsive potential between atoms lead to equations for the elastic constants of the cubic NaCl, CsCl and ZnS lattices as a function of compression. The NaCl lattice is unstable for n < 4.6 and the CsCl lattice is unstable for n < 7.2, where n is the exponent of the repulsive power law. The pressure derivatives of the shear constants (c′, c44) show a strong dependence upon crystallographic structure; for the ZnS lattice both dc′/dP and dc44/dP are negative for all reasonable values of n. The theoretical values of dcij/dP compare favorably with experimental results. For the isotropic shear modulus (μ), dμ/dP is determined by Poisson's ratio and the coordination of the ions in the lattice. Low (and possibly negative) values of dμ/dP are likely for several materials of importance to geophysics; such values would make low-velocity zones possible and interpretation of shock-wave data difficult. Vanishing of a shear constant predicts phase transitions at compression (V/V0) of 0.95 for the ZnS lattice, 0.75 for the NaCl lattice, and 0.60 for the CsCl lattice. The CsCl transition is predicted in spite of the fact that none of the elastic constants have a negative pressure derivative at zero pressure. The equation of state parameters, K0 and (dK/dP)0 (where K is the bulk modulus), are almost independent of crystallographic structure. K0 arises entirely from the Laplacian of the repulsive potential. (dK/dP)0 = 13(n+7) so that the stability limits on n make it unlikely that (dK/dP)0 < 3.5 for the NaCl lattice or less than 5 for the CsCl lattice.

[1]  R. N. Thurston Effective Elastic Coefficients for Wave Propagation in Crystals under Stress , 1965 .

[2]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[3]  D. L. Anderson A Seismic Equation of State , 1967 .

[4]  Leon Thomsen,et al.  On the high-temperature equation of state of solids. , 1969 .

[5]  Don L. Anderson,et al.  Equations of State and Crystal Structures of High-Pressure Phases of Shocked Silicates and Oxides , 1969 .

[6]  W. Cochran Crystal Stability and the Theory of Ferroelectricity , 1959 .

[7]  M. Blackman On the Thermal Expansion of Solids , 1957 .

[8]  O. Anderson,et al.  The use of ultrasonic measurements under modest pressure to estimate compression at high pressure , 1966 .

[9]  F. Birch The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain , 1938 .

[10]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[11]  O. Anderson,et al.  Some remarks on the volume dependence of the Grüneisen parameter , 1968 .

[12]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[13]  D. L. Anderson,et al.  Shock‐wave equations of state for rocks and minerals , 1968 .

[14]  W. H. Ramsey ON THE COMPRESSIBILITY OF THE EARTH , 1950 .

[15]  D. Chung,et al.  First Pressure Derivatives of Polycrystalline Elastic Moduli: Their Relation to Single‐Crystal Acoustic Data and Thermodynamic Relations , 1967 .

[16]  L. Knopoff,et al.  Comments on the interrelationships between Grüneisen's parameter and shock and isothermal equations of state , 1969 .

[17]  D. J. Pastine A FORMULATION OF THE GRUNEISEN PARAMETER FOR MONATOMIC CUBIC CRYSTALS , 1965 .

[18]  T. Barron LXXXII. On the thermal expansion of solids at low temperatures , 1955 .

[19]  J. C. Slater Introduction to chemical physics , 1933 .

[20]  M. Blackman On negative volume expansion coefficients , 1958 .

[21]  G. Barsch Relation between Third‐Order Elastic Constants of Single Crystals and Polycrystals , 1968 .

[22]  T. Barron Grüneisen parameters for the equation of state of solids , 1957 .

[23]  J. S. Dugdale,et al.  The Thermal Expansion of Solids , 1953 .

[24]  James A. Corll,et al.  Effect of Pressure on the Elastic Parameters and Structure of CdS , 1967 .

[25]  Percy Williams Bridgman,et al.  The Compressibility of Thirty Metals as a Function of Pressure and Temperature , 1923 .

[26]  Naohiro Soga,et al.  Anomalous Behavior of the Shear‐Sound Velocity under Pressure for Polycrystalline ZnO , 1967 .

[27]  E. Grüneisen,et al.  Theorie des festen Zustandes einatomiger Elemente , 1912 .

[28]  O. Anderson,et al.  The bulk modulus-volume relationship for oxide compounds and related geophysical problems , 1965 .

[29]  R. Fürth On the equation of state for solids , 1944, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  R. Cowley The elastic and dielectric properties of crystals with polarizable atoms , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[32]  D. Bancroft,et al.  The Effect of Pressure on the Rigidity of Rocks. I , 1938, The Journal of Geology.

[33]  Naohiro Soga,et al.  Temperature and pressure derivatives of isotropic sound velocities of α quartz , 1968 .

[34]  Murli H. Manghnani,et al.  Elastic constants of single‐crystal rutile under pressures to 7.5 kilobars , 1969 .

[35]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[36]  E. Grueneisen The State of a Solid Body , 1959 .

[37]  Naohiro Soga,et al.  Some elastic constant data on minerals relevant to geophysics , 1968 .

[38]  O. Anderson,et al.  Temperature dependence of the velocity derivatives of periclase , 1966 .

[39]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[40]  R. N. Thurston,et al.  Elastic Moduli of Quartz versus Hydrostatic Pressure at 25 and-195.8C , 1965 .

[41]  D. Schuele,et al.  The pressure derivatives of the elastic constants of CaF2 , 1967 .

[42]  Leon Thomsen,et al.  On the fourth-order anharmonic equation of state of solids , 1970 .

[43]  O. L. Anderson,et al.  2 - Determination and Some Uses of Isotropic Elastic Constants of Polycrystalline Aggregates Using Single-Crystal Data , 1965 .

[44]  Z. Chang,et al.  Adiabatic, Isothermal, and Intermediate Pressure Derivatives of the Elastic Constants for Cubic Symmetry. II. Numerical Results for 25 Materials , 1967 .

[45]  D. Schuele,et al.  Pressure and temperature derivatives of the elastic constants of caF2 and BaF2 , 1968 .

[46]  D. Dandekar Variation in the Elastic Constants of Calcite with Temperature , 1968 .

[47]  D. Chung Elastic moduli of single crystal and polycrystalline MgO , 1963 .

[48]  Hiroo Kanamori,et al.  Equations of State of Matter from Shock Wave Experiments , 1966 .

[49]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[50]  O. L. Anderson,et al.  Comments on the negative pressure dependence of the shear modulus found in some oxides , 1968 .

[51]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[52]  D. Schuele,et al.  Pressure derivatives of the elastic constants of NaCl and KCl at 295°K and 195°K , 1965 .