Beyond hairballs: The use of quantitative mass spectrometry data to understand protein–protein interactions

[1]  P. Braun Interactome mapping for analysis of complex phenotypes: Insights from benchmarking binary interaction assays , 2012, Proteomics.

[2]  A. Gingras,et al.  Mapping physical interactions within chromatin by proteomic approaches , 2012, Proteomics.

[3]  L. Trinkle-Mulcahy Resolving protein interactions and complexes by affinity purification followed by label‐based quantitative mass spectrometry , 2012, Proteomics.

[4]  M. Lam,et al.  Strategies for membrane interaction proteomics: No mass spectrometry required , 2012, Proteomics.

[5]  B. Ruotolo,et al.  Integrating mass spectrometry of intact protein complexes into structural proteomics , 2012, Proteomics.

[6]  Hyungwon Choi,et al.  SAINT-MS1: protein-protein interaction scoring using label-free intensity data in affinity purification-mass spectrometry experiments. , 2012, Journal of proteome research.

[7]  S. Oeljeklaus,et al.  Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. , 2012, Journal of proteome research.

[8]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[9]  S. Jakobs,et al.  MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization , 2012, Molecular biology of the cell.

[10]  John H. Morris,et al.  Global landscape of HIV–human protein complexes , 2011, Nature.

[11]  J. Wade Harper,et al.  Defining human ERAD networks through an integrative mapping strategy , 2011, Nature Cell Biology.

[12]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[13]  R. Aebersold,et al.  Joining Forces: Integrating Proteomics and Cross-linking with the Mass Spectrometry of Intact Complexes* , 2011, Molecular & Cellular Proteomics.

[14]  Ruedi Aebersold,et al.  Protein Significance Analysis in Selected Reaction Monitoring (SRM) Measurements* , 2011, Molecular & Cellular Proteomics.

[15]  N. Pfanner,et al.  Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. , 2011, Molecular cell.

[16]  Hyungwon Choi,et al.  Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome , 2011, Molecular systems biology.

[17]  Albert Sickmann,et al.  Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. , 2011, Journal of molecular biology.

[18]  Julian Mintseris,et al.  A Protein Complex Network of Drosophila melanogaster , 2011, Cell.

[19]  Bonnie Berger,et al.  Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal–Regulated Kinase Signaling , 2011, Science Signaling.

[20]  J. Martinou,et al.  Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. , 2011, Developmental cell.

[21]  Y. Kong,et al.  Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. , 2011, Immunity.

[22]  Jonathan D. G. Jones,et al.  Evidence for Network Evolution in an Arabidopsis Interactome Map , 2011, Science.

[23]  M. S. Mukhtar,et al.  Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network , 2011, Science.

[24]  Mihaela E. Sardiu,et al.  Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes , 2011, Molecular systems biology.

[25]  K. Colwill,et al.  A roadmap to generate renewable protein binders to the human proteome , 2011, Nature Methods.

[26]  Thomas M Green,et al.  A public genome-scale lentiviral expression library of human ORFs , 2011, Nature Methods.

[27]  D. Chan,et al.  Analysis of the Human Endogenous Coregulator Complexome , 2011, Cell.

[28]  A. Gingras,et al.  CCM3/PDCD10 Heterodimerizes with Germinal Center Kinase III (GCKIII) Proteins Using a Mechanism Analogous to CCM3 Homodimerization*♦ , 2011, The Journal of Biological Chemistry.

[29]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[30]  Hyungwon Choi,et al.  Label‐free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5 , 2011, Proteomics.

[31]  J. Rappsilber The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes , 2011, Journal of structural biology.

[32]  Mathieu Blanchette,et al.  Modeling contaminants in AP-MS/MS experiments. , 2011, Journal of proteome research.

[33]  T. Kislinger,et al.  Targeted proteomics by selected reaction monitoring mass spectrometry: applications to systems biology and biomarker discovery. , 2011, Molecular bioSystems.

[34]  Hyungwon Choi,et al.  SAINT: Probabilistic Scoring of Affinity Purification - Mass Spectrometry Data , 2010, Nature Methods.

[35]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[36]  Heng Zhu,et al.  Functional protein microarray technology , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[37]  C. Landry,et al.  Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells. , 2011, Methods in molecular biology.

[38]  Ian M. Donaldson,et al.  Literature curation of protein interactions: measuring agreement across major public databases , 2010, Database J. Biol. Databases Curation.

[39]  J. Greenblatt,et al.  Molecular Systems Biology 6; Article number 448; doi:10.1038/msb.2010.104 Citation: Molecular Systems Biology 6:448 , 2022 .

[40]  Christoph H Borchers,et al.  Crosslinking combined with mass spectrometry for structural proteomics. , 2010, Mass spectrometry reviews.

[41]  Chih-yuan Chiang,et al.  A Human MAP Kinase Interactome , 2010, Nature Methods.

[42]  Martin Kuiper,et al.  Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana , 2010, Molecular systems biology.

[43]  B. Fakler,et al.  Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain , 2010, Proceedings of the National Academy of Sciences.

[44]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[45]  Zhaohui S. Qin,et al.  A Global Protein Kinase and Phosphatase Interaction Network in Yeast , 2010, Science.

[46]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[47]  B. Fakler,et al.  Native GABAB receptors are heteromultimers with a family of auxiliary subunits , 2010, Nature.

[48]  Lan Huang,et al.  Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry* , 2010, Molecular & Cellular Proteomics.

[49]  R. Durbin,et al.  Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins , 2010, Science.

[50]  R. Aebersold,et al.  Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics* , 2010, Molecular & Cellular Proteomics.

[51]  A. Sinz Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry , 2010, Analytical and bioanalytical chemistry.

[52]  J. Koziol,et al.  Label-free, normalized quantification of complex mass spectrometry data for proteomics analysis , 2009, Nature Biotechnology.

[53]  C. Landry,et al.  A toolkit of protein-fragment complementation assays for studying and dissecting large-scale and dynamic protein-protein interactions in living cells. , 2010, Methods in enzymology.

[54]  Richard A. Moore,et al.  The Completion of the Mammalian Gene Collection (mgc) Recommended Citation , 2022 .

[55]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[56]  Walter Kolch,et al.  Cell fate decisions are specified by the dynamic ERK interactome , 2009, Nature Cell Biology.

[57]  Mihaela E. Sardiu,et al.  Determining Protein Complex Connectivity Using a Probabilistic Deletion Network Derived from Quantitative Proteomics , 2009, PloS one.

[58]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[59]  Christoph H Borchers,et al.  Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma , 2009, Nature Biotechnology.

[60]  S. Oeljeklaus,et al.  New dimensions in the study of protein complexes using quantitative mass spectrometry , 2009, FEBS letters.

[61]  S. Gerber,et al.  Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. , 2009, Molecular cell.

[62]  D. Figeys,et al.  A Novel Proteomics Approach for the Discovery of Chromatin-associated Protein Networks*S , 2009, Molecular & Cellular Proteomics.

[63]  P. Jonas,et al.  Functional Proteomics Identify Cornichon Proteins as Auxiliary Subunits of AMPA Receptors , 2009, Science.

[64]  Ruedi Aebersold,et al.  Quantitative interaction proteomics using mass spectrometry , 2009, Nature Methods.

[65]  R. Aebersold,et al.  An integrated workflow for charting the human interaction proteome: insights into the PP2A system , 2009, Molecular systems biology.

[66]  Brian Raught,et al.  A PP2A Phosphatase High Density Interaction Network Identifies a Novel Striatin-interacting Phosphatase and Kinase Complex Linked to the Cerebral Cavernous Malformation 3 (CCM3) Protein*S , 2009, Molecular & Cellular Proteomics.

[67]  Julie M. Sahalie,et al.  An experimentally derived confidence score for binary protein-protein interactions , 2008, Nature Methods.

[68]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[69]  Dawn R Mattoon,et al.  Profiling protein interaction networks with functional protein microarrays. , 2009, Methods in molecular biology.

[70]  Minoru Yoshida,et al.  Systematic cloning of an ORFeome using the Gateway system. , 2009, Methods in molecular biology.

[71]  K. Gunsalus,et al.  Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network , 2009, Nature Methods.

[72]  Hyungwon Choi,et al.  Significance Analysis of Spectral Count Data in Label-free Shotgun Proteomics*S , 2008, Molecular & Cellular Proteomics.

[73]  Daniel Barsky,et al.  Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3 , 2008, Proceedings of the National Academy of Sciences.

[74]  A. Gingras,et al.  PP4R4/KIAA1622 Forms a Novel Stable Cytosolic Complex with Phosphoprotein Phosphatase 4* , 2008, Journal of Biological Chemistry.

[75]  R. Aebersold,et al.  Selected reaction monitoring for quantitative proteomics: a tutorial , 2008, Molecular systems biology.

[76]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[77]  Mihaela E. Sardiu,et al.  Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics , 2008, Proceedings of the National Academy of Sciences.

[78]  Yanhui Hu,et al.  A Biomedically Enriched Collection of 7000 Human ORF Clones , 2008, PloS one.

[79]  Lan Huang,et al.  Identifying Dynamic Interactors of Protein Complexes by Quantitative Mass Spectrometry*S , 2008, Molecular & Cellular Proteomics.

[80]  A. Gingras,et al.  KIAA 1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4 , 2008 .

[81]  A. Poustka,et al.  Automated production of recombinant human proteins as resource for proteome research , 2008, Proteome Science.

[82]  A. Poustka,et al.  The full-ORF clone resource of the German cDNA Consortium , 2007, BMC Genomics.

[83]  R. Beynon,et al.  Absolute Multiplexed Quantitative Analysis of Protein Expression during Muscle Development Using QconCAT* , 2007, Molecular & Cellular Proteomics.

[84]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[85]  Mathieu Blanchette,et al.  Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. , 2007, Molecular cell.

[86]  R. Sears,et al.  CIP2A Inhibits PP2A in Human Malignancies , 2007, Cell.

[87]  Anne-Claude Gingras,et al.  Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases. , 2007, Methods.

[88]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[89]  Lukas N. Mueller,et al.  An integrated mass spectrometric and computational framework for the analysis of protein interaction networks , 2007, Nature Biotechnology.

[90]  J. Rogers,et al.  hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes , 2007, Genomics.

[91]  A. Heck,et al.  TATA-binding protein (TBP) transcription complexes* , 2007 .

[92]  Michael K. Coleman,et al.  Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. , 2006, Journal of proteome research.

[93]  M. Botchan,et al.  Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase , 2006, Proceedings of the National Academy of Sciences.

[94]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[95]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[96]  Mark Gerstein,et al.  Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. , 2005, Genes & development.

[97]  F. Pontén,et al.  Towards a human proteome atlas: High‐throughput generation of mono‐specific antibodies for tissue profiling , 2005, Proteomics.

[98]  E. Hafen,et al.  A Novel, Evolutionarily Conserved Protein Phosphatase Complex Involved in Cisplatin Sensitivity*S , 2005, Molecular & Cellular Proteomics.

[99]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[100]  R. Beynon,et al.  Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides , 2005, Nature Methods.

[101]  Natasa Przulj,et al.  High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells , 2005, Science.

[102]  R. Chanet,et al.  Protein interaction mapping: a Drosophila case study. , 2005, Genome research.

[103]  Jonathan S. Weissman,et al.  Construction, Verification and Experimental Use of Two Epitope-Tagged Collections of Budding Yeast Strains , 2005, Comparative and functional genomics.

[104]  Bernardo A Mangiola,et al.  A Drosophila protein-interaction map centered on cell-cycle regulators , 2004, Genome Biology.

[105]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[106]  G. Casari,et al.  A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. , 2004, Nature cell biology.

[107]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[108]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[110]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[111]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[112]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[113]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.