Median Statistics, H0, and the Accelerating Universe

We develop median statistics that provide powerful alternatives to χ2 likelihood methods and require fewer assumptions about the data. Application to astronomical data demonstrates that median statistics lead to results that are quite similar and almost as constraining as χ2 likelihood methods but with somewhat more confidence since they do not assume Gaussianity of the errors or that their magnitudes are known. Applying median statistics to Huchra's compilation of nearly all estimates of the Hubble constant, we find a median value H0 = 67 km s-1 Mpc-1. Median statistics assume only that the measurements are independent and free of systematic errors. This estimate is arguably the best summary of current knowledge because it uses all available data and, unlike other estimates, makes no assumption about the distribution of measurement errors. The 95% range of purely statistical errors is ±2 km s-1 Mpc-1. The high degree of statistical accuracy of this result demonstrates the power of using only these two assumptions and leads us to analyze the range of possible systematic errors in the median, which we estimate to be roughly ±5 km s-1 Mpc-1 (95% limits), dominating over the statistical errors. Using a Bayesian median statistics treatment of high-redshift Type Ia supernovae (SNe Ia) apparent magnitude versus redshift data from Riess et al., we find the posterior probability that the cosmological constant Λ > 0 is 70% or 89%, depending on the prior information we include. We find the posterior probability of an open universe is about 47%, and the probability of a spatially flat universe is 51% or 38%. Our results generally support the observers' conclusions but indicate weaker evidence for Λ > 0 (less than 2 σ). Median statistics analysis of the Perlmutter et al. high-redshift SNe Ia data shows that the best-fit flat-Λ model is favored over the best-fit Λ = 0 open model by odds of 366 : 1; the corresponding Riess et al. odds are 3 : 1 (assuming in each case prior odds of 1 : 1). A scalar field with a potential energy with a "tail" behaves like a time-variable Λ. Median statistics analyses of the SNe Ia data do not rule out such a time-variable Λ and may even favor it over a time-independent Λ and a Λ = 0 open model.

[2]  P. Harding,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The Metallicity Dependence of the Cepheid Distance Scale , 1997, astro-ph/9712055.

[3]  C. Kochanek Systematic effects in lens inversions - Aleph(1) exact models for 0957 + 561 , 1991 .

[4]  Constraining the equation of state of the Universe from distant Type Ia supernovae and cosmic microwave background anisotropies , 1999, astro-ph/9904356.

[5]  Paul J. Steinhardt,et al.  Cosmic Concordance and Quintessence , 1999, astro-ph/9901388.

[6]  Nonminimal coupling and quintessence , 1999, gr-qc/9910056.

[7]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[8]  Paul J. Steinhardt,et al.  Cosmological tracking solutions , 1999 .

[9]  Gravitational lensing statistics and constraints on the cosmological constant revisited , 1998, astro-ph/9810393.

[10]  T. Loredo,et al.  Type Ia supernovae, evolution, and the cosmological constant , 1999, astro-ph/9905027.

[11]  P. Peebles Tests of Cosmological Models Constrained by Inflation , 1984 .

[12]  J. Hellmig,et al.  Dark matter search with the HDMS-experiment , 1998 .

[13]  An Upper Limit on Omega_matter Using Lensed Arcs , 1999, astro-ph/9904245.

[14]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[15]  Peter B. Stetson,et al.  On the Photometric Consequences of Charge‐Transfer Inefficiency in WFPC2 , 1998, astro-ph/9810039.

[16]  A. Quillen,et al.  Gravitational lensing effects in a time-variable cosmological ‘constant’ cosmology , 1992 .

[17]  Cosmological constraints from lensing statistics and supernovae on the cosmic equation of state , 1998, astro-ph/9811460.

[18]  J. Gott Creation of open universes from de Sitter space , 1982, Nature.

[19]  K. Ganga,et al.  UCSB South Pole 1994 Cosmic Microwave Background Anisotropy Measurement Constraints on Open and Flat-Λ Cold Dark Matter Cosmogonies , 1996, astro-ph/9602141.

[20]  A. Edge,et al.  GINGA observations of Abell 2281: implications for H0 , 1990 .

[21]  Prem K. Goel,et al.  Bayesian Analysis in Statistics and Econometrics , 1992 .

[22]  A. Starobinsky,et al.  The Case for a positive cosmological Lambda term , 1999, astro-ph/9904398.

[23]  V. V. Hristov,et al.  Cosmological parameters from the first results of Boomerang , 2001 .

[24]  Matias Zaldarriaga,et al.  Current Cosmological Constraints from a 10 Parameter Cosmic Microwave Background Analysis , 2000, astro-ph/0002091.

[25]  A. Aguirre Intergalactic Dust and Observations of Type Ia Supernovae , 1999, astro-ph/9904319.

[26]  Cosmology with a primordial scaling field , 1997, astro-ph/9711102.

[27]  K. Gorski,et al.  Python I, II, and III Cosmic Microwave Background Anisotropy Measurement Constraints on Open and Flat-Λ Cold Dark Matter Cosmogonies , 1999, astro-ph/9905127.

[28]  P. Peebles,et al.  Cosmology with a Time Variable Cosmological Constant , 1988 .

[29]  Distance to M31 With the HST and Hipparcos Red Clump Stars , 1998, astro-ph/9802121.

[30]  Tracker fields from nonminimally coupled theory , 1999, hep-th/9907198.

[31]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[32]  M. Özer Fate of the Universe, Age of the Universe, Dark Matter, and the Decaying Vacuum Energy , 1999 .

[33]  J. Wheeler,et al.  Influence of the Stellar Population on Type Ia Supernovae: Consequences for the Determination of Ω , 1999, astro-ph/9908226.

[34]  V. Šimon,et al.  Variations of the orbital periods in semi-detached binary stars with radiative outer layers , 1999 .

[35]  C. Kochanek,et al.  Limits on Cosmological Models from Radio-selected Gravitational Lenses , 1997, astro-ph/9707032.

[36]  S. Dodelson,et al.  Dark energy and the cosmic microwave background radiation. , 2000, Physical review letters.

[37]  A. Goobar,et al.  Feasibility of measuring the cosmological constant {Lambda} and mass density {Omega} using Type Ia supernovae , 1995, astro-ph/9505022.

[38]  Irwin I. Shapiro,et al.  New model for the 0957 + 561 gravitational lens system - Bounds on masses of a possible black hole and dark matter and prospects for estimation of H0 , 1991 .

[39]  S. Matarrese,et al.  Power-law inflation. , 1985, Physical review. D, Particles and fields.

[40]  Garth D. Illingworth,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant , 1999, astro-ph/9909260.

[41]  K. Gorski,et al.  COBE DMR-normalized open inflation cold dark matter cosmogony , 1995, astro-ph/9502034.

[42]  G. Vaucouleurs The extragalactic distance scale. VIII: A comparison of distance scales , 1993 .

[43]  Burning regimes for thermonuclear supernovae and cosmological applications of SNe Ia , 2000 .

[44]  K. Ganga,et al.  First Results from Viper: Detection of Small-scale Anisotropy at 40 GHz , 1999, The Astrophysical journal.

[45]  Bock,et al.  A Measurement of Omega from the North American Test Flight of Boomerang. , 1999, The Astrophysical journal.

[46]  H. Klapdor-kleingrothaus,et al.  Dark matter in astrophysics and particle physics, 1998 : proceedings of the second International Conference on Dark Matter in Astrophysics and Particle Physics, Heidelberg, Germany, 20-25 July, 1998 , 1999 .

[47]  Supernova IA Constraints on a Time-variable Cosmological ``Constant'' , 1999, astro-ph/9910527.

[48]  J. Wheeler,et al.  Maximum Brightness and Postmaximum Decline of Light Curves of Type Supernovae Ia: A Comparison of Theory and Observations , 1996, astro-ph/9609070.

[49]  Yasunori Fujii A Two scalar model for a small but nonzero cosmological constant , 2000 .

[50]  K. Gorski,et al.  COBE-DMR-normalized Open Cold Dark Matter Cosmogonies , 1996, astro-ph/9608054.

[51]  Groups of Galaxies. 111. Mass-To Ratios and Crossing Times , 1977 .

[52]  Bruce M. Hill,et al.  Bayesian Nonparametric Prediction and Statistical Inference , 1992 .

[53]  Arc Statistics in Clusters: Galaxy Contribution , 1999, astro-ph/9909397.

[54]  K. Gorski,et al.  Python I, II, and III CMB Anisotropy, Measurement Constraints on Open and Flat-A CDM Cosmogonies , 1999 .

[55]  H. Jeffreys,et al.  Theory of probability , 1896 .

[56]  K. Ganga,et al.  MAX 4 and MAX 5 CMB Anisotropy Measurement Constraints on Open and Flat-A CDM Cosmogonies , 1997 .

[57]  Ratra,et al.  Inflation in an open universe. , 1995, Physical review. D, Particles and fields.

[58]  G. Soucail Gravitational lensing: Recent progress and future goals , 2001 .

[59]  Yun Wang,et al.  Flux-averaging Analysis of Type Ia Supernova Data , 1999, astro-ph/9907405.

[60]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[61]  Scaling solutions in general nonminimal coupling theories , 1999, astro-ph/9904120.

[62]  P. Binétruy Cosmological Constant vs. Quintessence , 2000 .

[63]  K. Ganga,et al.  MAX 4 and MAX 5 Cosmic Microwave Background Anisotropy Measurement Constraints on Open and Flat-Λ Cold Dark Matter Cosmogonies , 1997, astro-ph/9708202.

[64]  C. Kobayashi,et al.  Evolution of Dust Extinction and Supernova Cosmology , 1999, The Astrophysical journal.

[65]  Page,et al.  Characterizing the peak in the cosmic microwave background angular power spectrum , 2000, Physical review letters.

[66]  L. Susskind,et al.  Quantum Mechanics of Inflation , 1985 .

[67]  Saul Perlmutter,et al.  Constraining Dark Energy with Type Ia Supernovae and Large-Scale Structure , 1999 .

[68]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[69]  Robustness of quintessence , 1999, astro-ph/9912046.

[70]  Ratra Joining conditions for cosmological perturbations at an equation-of-state transition. , 1991, Physical review. D, Particles and fields.

[71]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[72]  Ratra,et al.  Quantum mechanics of exponential-potential inflation. , 1989, Physical review. D, Particles and fields.

[73]  P. Peebles,et al.  CDM cosmogony in an open universe , 1994 .

[74]  P. Nugent,et al.  The Rise Times of High- and Low-Redshift Type Ia Supernovae Are Consistent , 2000, astro-ph/0001049.

[75]  Eric Gawiser,et al.  THE COSMIC MICROWAVE BACKGROUND RADIATION * , 1981, astro-ph/0002044.

[76]  Quintessence, the gravitational constant, and gravity , 1999, gr-qc/9903094.

[77]  Phenomenology of a realistic accelerating universe using only planck-scale physics , 1999, Physical review letters.

[78]  The Cepheid period-luminosity zero-point from radial velocities and Hipparcos proper motions , 1998 .

[79]  Cosmological Constant Versus Quintessence , 2000, hep-ph/0005037.

[80]  E. Sorokina,et al.  Thermonuclear Burning Regimes and the Use of SNe Ia in Cosmology , 1999 .

[81]  Self-similar cosmological solutions with a nonminimally coupled scalar field , 1999, gr-qc/9908026.

[82]  Y. Yoshii,et al.  New Limits on a Cosmological Constant from Statistics of Gravitational Lensing , 1998, astro-ph/9808321.

[83]  A. Sandage Current Problems in the Extragalactic Distance Scale. , 1958 .

[84]  N. J. Nunes,et al.  Quintessence arising from exponential potentials , 2000 .

[85]  D. Spergel,et al.  Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony , 1994 .

[86]  K. Gorski,et al.  Cosmic Microwave Background Anisotropy Constraints on Open and Flat-Λ Cold Dark Matter Cosmogonies from UCSB South Pole, ARGO, MAX, White Dish, and SuZIE Data , 1999, astro-ph/9901014.