Pointwise gradient bounds for a class of very singular quasilinear elliptic equations

A pointwise gradient bound for weak solutions to Dirichlet problem for quasilinear elliptic equations \begin{document}$ -\mathrm{div}(\mathbb{A}(x,\nabla u)) = \mu $\end{document} is established via Wolff type potentials. It is worthwhile to note that the model case of \begin{document}$ \mathbb{A} $\end{document} here is the non-degenerate \begin{document}$ p $\end{document} -Laplacian operator. The central objective is to extend the pointwise regularity results in [Q.-H. Nguyen, N. C. Phuc, Pointwise gradient estimates for a class of singular quasilinear equations with measure data, J. Funct. Anal. 278(5) (2020), 108391] to the very singular case \begin{document}$ 1 , where the data \begin{document}$ \mu $\end{document} on right-hand side is assumed belonging to some classes that close to \begin{document}$ L^1 $\end{document} . Moreover, a global pointwise estimate for gradient of weak solutions to such problem is also obtained under the additional assumption that \begin{document}$ \Omega $\end{document} is sufficiently flat in the Reifenberg sense.

[1]  Quoc-Hung Nguyen,et al.  Pointwise gradient estimates for a class of singular quasilinear equations with measure data , 2019, Journal of Functional Analysis.

[2]  A. Cianchi,et al.  Potential estimates for the p -Laplace system with data in divergence form , 2017, Journal of Differential Equations.

[3]  T. Kuusi,et al.  Riesz Potentials and Nonlinear Parabolic Equations , 2013, 1302.0266.

[4]  E. Giusti Direct methods in the calculus of variations , 2003 .

[5]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[6]  Lorentz–Morrey global bounds for singular quasilinear elliptic equations with measure data , 2018, Communications in Contemporary Mathematics.

[7]  Good-λ type bounds of quasilinear elliptic equations for the singular case , 2019, Nonlinear Analysis.

[8]  T. Kuusi,et al.  Universal potential estimates , 2012 .

[9]  F. Gehring,et al.  The $L^p$-integrability of the partial derivatives of a quasiconformal mapping , 1973 .

[10]  G. Mingione,et al.  Gradient estimates via non-linear potentials , 2009, 0906.4939.

[11]  D. Labutin Potential estimates for a class of fully nonlinear elliptic equations , 2002 .

[12]  P. Lindqvist Notes on the p-Laplace equation , 2006 .

[13]  Giuseppe Mingione,et al.  Guide to nonlinear potential estimates , 2014, Bulletin of mathematical sciences.

[14]  J. Habermann,et al.  GRADIENT ESTIMATES VIA NON STANDARD POTENTIALS AND CONTINUITY , 2010 .

[15]  Quoc-Hung Nguyen,et al.  Good-$$\lambda $$λ and Muckenhoupt–Wheeden type bounds in quasilinear measure datum problems, with applications , 2018, Mathematische Annalen.

[16]  Thanh-Nhan Nguyen,et al.  Level-set inequalities on fractional maximal distribution functions and applications to regularity theory , 2020, 2004.06394.

[17]  Lihe Wang,et al.  Elliptic equations with BMO nonlinearity in Reifenberg domains , 2008 .

[18]  U. Dini Sur la méthode des approximations successives pour les équations aux derivées partielles du deuxième ordre , 1902 .

[19]  G. Mingione,et al.  Gradient continuity estimates , 2010 .

[20]  J. Vázquez,et al.  An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .

[21]  T. Kuusi,et al.  Nonlinear Calderón–Zygmund Theory in the Limiting Case , 2018 .

[22]  C. Kenig,et al.  Poisson kernel characterization of Reifenberg flat chord arc domains , 2003 .

[23]  N. Phuc,et al.  Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains , 2011 .

[24]  T. Kuusi,et al.  Vectorial nonlinear potential theory , 2018 .

[25]  Neil S. Trudinger,et al.  On the weak continuity of elliptic operators and applications to potential theory , 2002 .

[26]  G. Mingione Gradient estimates below the duality exponent , 2010 .

[27]  P. Baroni,et al.  Elliptic Interpolation Estimates for Non-Standard Growth Operators , 2014 .

[28]  E. J. McShane,et al.  Solution of the Plateau problem form-dimensional surfaces of varying topological type , 1960 .

[29]  T. Kilpeläinen,et al.  Degenerate elliptic equations with measure data and nonlinear potentials , 1992 .

[30]  N. Fusco,et al.  Regularity for Minimizers of Non-quadratic Functionals: The Case 1 , 1989 .

[31]  T. Kilpeläinen,et al.  The Wiener test and potential estimates for quasilinear elliptic equations , 1994 .

[32]  G. Mingione,et al.  Gradient estimates via linear and nonlinear potentials , 2010 .

[33]  G. Mingione Gradient potential estimates , 2011 .

[34]  Yeonghun Youn,et al.  Optimal gradient estimates via Riesz potentials for p(·)-Laplacian type equations , 2017 .

[35]  New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data , 2019, 1905.04891.

[36]  T. Kuusi,et al.  Linear Potentials in Nonlinear Potential Theory , 2013 .

[37]  A. Lemenant,et al.  On the extension property of Reifenberg-flat domains , 2012, 1209.3602.

[38]  T. Kuusi,et al.  The Wolff gradient bound for degenerate parabolic equations , 2014 .

[39]  Thanh-Nhan Nguyen,et al.  Lorentz improving estimates for the p-Laplace equations with mixed data , 2020, 2003.04530.

[40]  P. Baroni Lorentz estimates for degenerate and singular evolutionary systems , 2013 .

[41]  The Calderón-Zygmund theory for elliptic problems with measure data , 2006, math/0609670.

[42]  T. Kuusi,et al.  A note on the Wolff potential estimate for solutions to elliptic equations involving measures , 2010 .

[43]  G. M. Lieberman Higher regularity for nonlinear oblique derivative problems in Lipschitz domains , 2002 .