Pointwise gradient bounds for a class of very singular quasilinear elliptic equations
暂无分享,去创建一个
[1] Quoc-Hung Nguyen,et al. Pointwise gradient estimates for a class of singular quasilinear equations with measure data , 2019, Journal of Functional Analysis.
[2] A. Cianchi,et al. Potential estimates for the p -Laplace system with data in divergence form , 2017, Journal of Differential Equations.
[3] T. Kuusi,et al. Riesz Potentials and Nonlinear Parabolic Equations , 2013, 1302.0266.
[4] E. Giusti. Direct methods in the calculus of variations , 2003 .
[5] Michael Taylor,et al. Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .
[6] Lorentz–Morrey global bounds for singular quasilinear elliptic equations with measure data , 2018, Communications in Contemporary Mathematics.
[7] Good-λ type bounds of quasilinear elliptic equations for the singular case , 2019, Nonlinear Analysis.
[8] T. Kuusi,et al. Universal potential estimates , 2012 .
[9] F. Gehring,et al. The $L^p$-integrability of the partial derivatives of a quasiconformal mapping , 1973 .
[10] G. Mingione,et al. Gradient estimates via non-linear potentials , 2009, 0906.4939.
[11] D. Labutin. Potential estimates for a class of fully nonlinear elliptic equations , 2002 .
[12] P. Lindqvist. Notes on the p-Laplace equation , 2006 .
[13] Giuseppe Mingione,et al. Guide to nonlinear potential estimates , 2014, Bulletin of mathematical sciences.
[14] J. Habermann,et al. GRADIENT ESTIMATES VIA NON STANDARD POTENTIALS AND CONTINUITY , 2010 .
[15] Quoc-Hung Nguyen,et al. Good-$$\lambda $$λ and Muckenhoupt–Wheeden type bounds in quasilinear measure datum problems, with applications , 2018, Mathematische Annalen.
[16] Thanh-Nhan Nguyen,et al. Level-set inequalities on fractional maximal distribution functions and applications to regularity theory , 2020, 2004.06394.
[17] Lihe Wang,et al. Elliptic equations with BMO nonlinearity in Reifenberg domains , 2008 .
[18] U. Dini. Sur la méthode des approximations successives pour les équations aux derivées partielles du deuxième ordre , 1902 .
[19] G. Mingione,et al. Gradient continuity estimates , 2010 .
[20] J. Vázquez,et al. An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .
[21] T. Kuusi,et al. Nonlinear Calderón–Zygmund Theory in the Limiting Case , 2018 .
[22] C. Kenig,et al. Poisson kernel characterization of Reifenberg flat chord arc domains , 2003 .
[23] N. Phuc,et al. Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains , 2011 .
[24] T. Kuusi,et al. Vectorial nonlinear potential theory , 2018 .
[25] Neil S. Trudinger,et al. On the weak continuity of elliptic operators and applications to potential theory , 2002 .
[26] G. Mingione. Gradient estimates below the duality exponent , 2010 .
[27] P. Baroni,et al. Elliptic Interpolation Estimates for Non-Standard Growth Operators , 2014 .
[28] E. J. McShane,et al. Solution of the Plateau problem form-dimensional surfaces of varying topological type , 1960 .
[29] T. Kilpeläinen,et al. Degenerate elliptic equations with measure data and nonlinear potentials , 1992 .
[30] N. Fusco,et al. Regularity for Minimizers of Non-quadratic Functionals: The Case 1 , 1989 .
[31] T. Kilpeläinen,et al. The Wiener test and potential estimates for quasilinear elliptic equations , 1994 .
[32] G. Mingione,et al. Gradient estimates via linear and nonlinear potentials , 2010 .
[33] G. Mingione. Gradient potential estimates , 2011 .
[34] Yeonghun Youn,et al. Optimal gradient estimates via Riesz potentials for p(·)-Laplacian type equations , 2017 .
[35] New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data , 2019, 1905.04891.
[36] T. Kuusi,et al. Linear Potentials in Nonlinear Potential Theory , 2013 .
[37] A. Lemenant,et al. On the extension property of Reifenberg-flat domains , 2012, 1209.3602.
[38] T. Kuusi,et al. The Wolff gradient bound for degenerate parabolic equations , 2014 .
[39] Thanh-Nhan Nguyen,et al. Lorentz improving estimates for the p-Laplace equations with mixed data , 2020, 2003.04530.
[40] P. Baroni. Lorentz estimates for degenerate and singular evolutionary systems , 2013 .
[41] The Calderón-Zygmund theory for elliptic problems with measure data , 2006, math/0609670.
[42] T. Kuusi,et al. A note on the Wolff potential estimate for solutions to elliptic equations involving measures , 2010 .
[43] G. M. Lieberman. Higher regularity for nonlinear oblique derivative problems in Lipschitz domains , 2002 .