The energy conservation and regularity for the Navier-Stokes equations

In this paper, we consider the energy conservation and regularity of the weak solution u to the Navier-Stokes equations in the endpoint case. We first construct a divergence-free field u(t, x) which satisfies limt→T √ T − t||u(t)||BMO <∞ and limt→T √ T − t||u(t)||L∞ = ∞ to demonstrate that the Type II singularity is admissible in the endpoint case u ∈ L(BMO). Secondly, we prove that if a suitable weak solution u(t, x) satisfying ||u||L2,∞([0,T ];BMO(Ω)) <∞ for arbitrary Ω ⊆ R then the local energy equality is valid on [0, T ]×Ω. As a corollary, we also prove ||u||L2,∞([0,T ];BMO(R)) <∞ implies the global energy equality on [0, T ]. Thirdly, we show that as the solution u approaches a finite blowup time T , the norm ||u(t)||BMO must blow up at a rate faster than c T−t with some absolute constant c > 0. Furthermore, we prove that if ||u3||L2,∞([0,T ];BMO(R)) = M < ∞ then there exists a small constant cM depended on M such that if ||uh||L2,∞([0,T ];BMO(R)) ≤ cM then u is regular on (0, T ]× R.

[1]  R. Farwig,et al.  On the energy equality of Navier–Stokes equations in general unbounded domains , 2010 .

[2]  J. Lions Sur la régularité et l'unicité des solutions turbulentes des équations de Navier Stokes , 1960 .

[3]  A. Cheskidov,et al.  Energy equality for the Navier–Stokes equations in weak-in-time Onsager spaces , 2018, Nonlinearity.

[4]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[5]  R. Shvydkoy A Geometric Condition Implying an Energy Equality for Solutions of the 3D Navier–Stokes Equation , 2008, 0803.2057.

[6]  V. Sverák,et al.  Navier-Stokes Equations with Lower Bounds on the Pressure , 2002 .

[7]  V. Vicol,et al.  Nonuniqueness of weak solutions to the Navier-Stokes equation , 2017, Annals of Mathematics.

[8]  P. Mattila Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .

[9]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[10]  Fanghua Lin,et al.  A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .

[11]  Hiroshi Fujita,et al.  On the nonstationary Navier-Stokes system , 1962 .

[12]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[13]  Zhifei Zhang,et al.  On the interior regularity criteria and the number of singular points to the Navier-Stokes equations , 2014 .

[14]  H. Kozono,et al.  Interior regularity criteria in weak spaces for the Navier-Stokes equations , 2004 .

[15]  M. Shinbrot The Energy Equation for the Navier–Stokes System , 1974 .

[16]  T. Tao Quantitative bounds for critically bounded solutions to the Navier-Stokes equations , 2019, 1908.04958.

[17]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[18]  I. Kukavica Role of the Pressure for Validity of the Energy Equality for Solutions of the Navier–Stokes Equation , 2006 .

[19]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[20]  Trevor M. Leslie,et al.  Conditions Implying Energy Equality for Weak Solutions of the Navier-Stokes Equations , 2016, SIAM J. Math. Anal..

[21]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[22]  Yun Wang,et al.  Limiting case for the regularity criterion of the Navier-Stokes equations and the magnetohydrodynamic equations , 2010 .

[23]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[24]  R. Shvydkoy,et al.  The Energy Measure for the Euler and Navier–Stokes Equations , 2017, Archive for Rational Mechanics and Analysis.

[25]  O. Ladyzhenskaya,et al.  On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier—Stokes equations , 1999 .

[26]  S. Friedlander,et al.  On the Energy Equality for Weak Solutions of the 3D Navier-Stokes Equations , 2007, 0704.2089.