Advanced dMRI Signal Modeling for Tissue Microstructure Characterization. (Modélisation Avancée du Signal dMRI pour la Caractérisation de la Microstructure Tissulaire)

This thesis is dedicated to furthering neuroscientific understanding of the human brain using diffusion-sensitized Magnetic Resonance Imaging (dMRI). Within dMRI, we focus on the estimation and interpretation of microstructure-related markers, often referred to as ``Microstructure Imaging''. This thesis is organized in three parts. Part I focuses on understanding the state-of-the-art in Microstructure Imaging. We start with the basic of diffusion MRI and a brief overview of diffusion anisotropy. We then review and compare most state-of-the-art microstructure models in PGSE-based Microstructure Imaging, emphasizing model assumptions and limitations, as well as validating them using spinal cord data with registered ground truth histology. In Part II we present our contributions to 3D q-space imaging and microstructure recovery. We propose closed-form Laplacian regularization for the recent MAP functional basis, allowing robust estimation of tissue-related q-space indices. We also apply this approach to Human Connectome Project data, where we use it as a preprocessing for other microstructure models. Finally, we compare tissue biomarkers in a ex-vivo study of Alzheimer rats at different ages. In Part III, we present our contributions to representing the qt-space - varying over 3D q-space and diffusion time. We present an initial approach that focuses on 3D axon diameter estimation from the qt-space. We end with our final approach, where we propose a novel, regularized functional basis to represent the qt-signal, which we call qt-dMRI. Our approach allows for the estimation of time-dependent q-space indices, which quantify the time-dependence of the diffusion signal.

[1]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[2]  Jörg Kärger,et al.  The propagator representation of molecular transport in microporous crystallites , 1983 .

[3]  Francesco Grussu Microstructural imaging of the human spinal cord with advanced diffusion MRI , 2016 .

[4]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[5]  Rachid Deriche,et al.  Model-Free, Regularized, Fast, and Robust Analytical Orientation Distribution Function Estimation , 2010, MICCAI.

[6]  Rachid Deriche,et al.  Groupwise Structural Parcellation of the Cortex: A Sound Approach Based on Logistic Models , 2016, MICCAI 2016.

[7]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[8]  J. Veraart,et al.  Universal power-law scaling of water diffusion in human brain defines what we see with MRI , 2016, 1609.09145.

[9]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[10]  W. Baaré,et al.  An ex vivo imaging pipeline for producing high‐quality and high‐resolution diffusion‐weighted imaging datasets , 2011, Human brain mapping.

[11]  Cheng Guan Koay,et al.  Nuclear magnetic resonance characterization of general compartment size distributions , 2011 .

[12]  B. Stieltjes,et al.  Novel spherical phantoms for Q‐ball imaging under in vivo conditions , 2011, Magnetic resonance in medicine.

[13]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[14]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[15]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[16]  Rachid Deriche,et al.  Deterministic and Probabilistic Q-Ball Tractography: from Diffusion to Sharp Fiber Distributions , 2007 .

[17]  Denis Le Bihan,et al.  Imagerie de diffusion in-vivo par résonance magnétique nucléaire , 1985 .

[18]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[19]  Rachid Deriche,et al.  Elucidating dispersion effects in perfusion MRI by means of dispersion-compliant bases , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[20]  D. Topgaard,et al.  Determination of the self-diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length. , 2009, Journal of magnetic resonance.

[21]  D. Cory,et al.  Measurement of translational displacement probabilities by NMR: An indicator of compartmentation , 1990, Magnetic resonance in medicine.

[22]  G. Walter Properties of Hermite Series Estimation of Probability Density , 1977 .

[23]  E. Stejskal Use of Spin Echoes in a Pulsed Magnetic‐Field Gradient to Study Anisotropic, Restricted Diffusion and Flow , 1965 .

[24]  M. Budde,et al.  Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology , 2014, Brain Structure and Function.

[25]  Extracting a biomarker for the mean cross-sectional area from the ODF , 2014 .

[26]  Michael W. Weiner,et al.  Alzheimer’s Disease Classification with Novel Microstructural Metrics from Diffusion-Weighted MRI , 2016 .

[27]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[28]  D. Louis Collins,et al.  Diffusion Weighted Image Denoising Using Overcomplete Local PCA , 2013, PloS one.

[29]  Sébastien Ourselin,et al.  In vivo imaging of tau pathology using multi-parametric quantitative MRI , 2015, NeuroImage.

[30]  Kenia R. Campanholo,et al.  Substantia nigra fractional anisotropy is not a diagnostic biomarker of Parkinson’s disease: A diagnostic performance study and meta-analysis , 2017, European Radiology.

[31]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[32]  Hui Zhang,et al.  PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study , 2015, Magnetic resonance in medicine.

[33]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[34]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[35]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[36]  Rachid Deriche,et al.  Laplacian-regularized MAP-MRI: Improving axonal caliber estimation , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[37]  D. Barazany,et al.  AxCaliber 3D , 2010 .

[38]  Martin Bendszus,et al.  Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo , 2015, PloS one.

[39]  Rachid Deriche,et al.  Model-Free and Analytical EAP Reconstruction via Spherical Polar Fourier Diffusion MRI , 2010, MICCAI.

[40]  Klaus-Dietmarmerboldt Self-Diffusion NMR Imaging Using Stimulated Echoes , 2004 .

[41]  S. Nagarajan,et al.  White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation , 2015, PloS one.

[42]  Rachid Deriche,et al.  Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use? , 2015, Medical Image Anal..

[43]  Rachid Deriche,et al.  AxTract: Microstructure-Driven Tractography Based on the Ensemble Average Propagator , 2015, IPMI.

[44]  van Cappellen van Walsum A-M.,et al.  Validation of NODDI estimation of dispersion anisotropy in V1 of the human neocortex , 2015 .

[45]  W. Jänig,et al.  A proposed relationship between circumference and conduction velocity of unmyelinated axons from normal and regenerated cat hindlimb cutaneous nerves , 1991, Neuroscience.

[46]  Baba C. Vemuri,et al.  Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space , 2015, IPMI.

[47]  Rachid Deriche,et al.  Diffusion MRI signal reconstruction with continuity constraint and optimal regularization , 2012, Medical Image Anal..

[48]  Rachid Deriche,et al.  A Unifying Framework for Spatial and Temporal Diffusion in Diffusion MRI , 2015, IPMI.

[49]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[50]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[51]  Pasko Rakic,et al.  A Transgenic Alzheimer Rat with Plaques, Tau Pathology, Behavioral Impairment, Oligomeric Aβ, and Frank Neuronal Loss , 2013, The Journal of Neuroscience.

[52]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[53]  Stuart Crozier,et al.  Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images , 2012, NeuroImage.

[54]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[55]  B. Wandell,et al.  Development of white matter and reading skills , 2012, Proceedings of the National Academy of Sciences.

[56]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[57]  Julien Cohen-Adad,et al.  The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter , 2015, NeuroImage.

[58]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[59]  P van Gelderen,et al.  Restricted and anisotropic displacement of water in healthy cat brain and in stroke studied by NMR diffusion imaging , 1991, Magnetic resonance in medicine.

[60]  Rachid Deriche,et al.  Using 3D-SHORE and MAP-MRI to obtain both tractography and microstructural constrast from a clinical DMRI acquisition , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[61]  Jean-Philippe Thiran,et al.  Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging , 2014, NeuroImage: Clinical.

[62]  William S. Price,et al.  Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion, part 1: basic theory , 1997 .

[63]  M C Bushell,et al.  PRELIMINARY COMMUNICATION: The spatial mapping of translational diffusion coefficients by the NMR imaging technique , 1985 .

[64]  P. Rakić,et al.  Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey , 1990, The Journal of comparative neurology.

[65]  A. Schwartzman,et al.  Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion‐compartment imaging (DIAMOND) , 2016, Magnetic resonance in medicine.

[66]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[67]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[68]  Charles S Springer,et al.  Equilibrium water exchange between the intra‐ and extracellular spaces of mammalian brain , 2003, Magnetic resonance in medicine.

[69]  Hui Zhang,et al.  Axon diameter mapping in the presence of orientation dispersion with diffusion MRI , 2011, NeuroImage.

[70]  Rachid Deriche,et al.  Multi-Spherical Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity , 2016, MICCAI 2016.

[71]  Timothy Edward John Behrens,et al.  Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI , 2012, NeuroImage.

[72]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[73]  Dinggang Shen,et al.  Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI , 2015, IPMI.

[74]  Peter J Basser,et al.  Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. , 2006, Journal of magnetic resonance.

[75]  Rachid Deriche,et al.  Noise Floor Removal via Phase Correction of Complex Diffusion-Weighted Images: Influence on DTI and q-Space Metrics , 2016, MICCAI 2016.

[76]  Rachid Deriche,et al.  Diffusion MRI microstructure models with in vivo human brain Connectom data: results from a multi-group comparison , 2016, 1604.07287.

[77]  P. Basser Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.

[78]  R. Deriche,et al.  Design of multishell sampling schemes with uniform coverage in diffusion MRI , 2013, Magnetic resonance in medicine.

[79]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[80]  Y. Cohen,et al.  In vivo and in vitro bi‐exponential diffusion of N ‐acetyl aspartate (NAA) in rat brain: a potential structural probe? , 1998, NMR in biomedicine.

[81]  Andrew L. Alexander,et al.  Hybrid diffusion imaging , 2007, NeuroImage.

[82]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[83]  Yogesh Rathi,et al.  On Approximation of Orientation Distributions by Means of Spherical Ridgelets , 2008, IEEE Transactions on Image Processing.

[84]  Cheng Guan Koay,et al.  A signal transformational framework for breaking the noise floor and its applications in MRI. , 2009, Journal of magnetic resonance.

[85]  David L. Webb,et al.  One cannot hear the shape of a drum , 1992, math/9207215.

[86]  Daniel C. Alexander,et al.  Multi-compartment microscopic diffusion imaging , 2016, NeuroImage.

[87]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[88]  M. Budde,et al.  Quantification of anisotropy and fiber orientation in human brain histological sections , 2012, Front. Integr. Neurosci..

[89]  J. Hursh THE PROPERTIES OF GROWING NERVE FIBERS , 1939 .

[90]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[91]  Nikos K. Logothetis,et al.  Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque , 2014, Biological Cybernetics.

[92]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[93]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[94]  R. Deriche,et al.  Brain correlates of apathy in Kleine Levin syndrome: a mean apparent propagator study , 2017 .

[95]  Naruhiko Sahara,et al.  Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study , 2014, Neurobiology of Aging.

[96]  R. Deriche,et al.  Multi-Spherical Diffusion MRI: An in-vivo Test- Retest Study of Time-Dependent q-space Indices , 2017 .

[97]  J. E. Tanner Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient , 1978 .

[98]  Alessandro Daducci,et al.  Microstructure Informed Tractography: Pitfalls and Open Challenges , 2016, Front. Neurosci..

[99]  R. Deriche,et al.  Comparison of sampling strategies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging , 2015, Magnetic resonance in medicine.

[100]  Carl-Fredrik Westin,et al.  Estimation of fiber Orientation Probability Density Functions in High Angular Resolution Diffusion Imaging , 2009, NeuroImage.

[101]  Rachid Deriche,et al.  MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data , 2016, NeuroImage.

[102]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[103]  Maxime Descoteaux,et al.  Non Local Spatial and Angular Matching : Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising , 2016, Medical Image Anal..

[104]  Andrew L. Alexander,et al.  Computation of Diffusion Function Measures in $q$ -Space Using Magnetic Resonance Hybrid Diffusion Imaging , 2008, IEEE Transactions on Medical Imaging.

[105]  Daniel C. Alexander,et al.  Bingham–NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI , 2016, NeuroImage.

[106]  P. Thompson,et al.  Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats , 2015, PloS one.

[107]  A. Szafer,et al.  An analytical model of restricted diffusion in bovine optic nerve , 1997, Magnetic resonance in medicine.

[108]  藤原 康博 International Society for Magnetic Resonance in Medicine : ISMRM, 国際磁気共鳴医学会 , 2010 .

[109]  Hui Zhang,et al.  Detailed laminar characteristics of the human neocortex revealed by NODDI , 2013 .

[110]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[111]  J. Hardy,et al.  Alzheimer's disease: the amyloid cascade hypothesis. , 1992, Science.

[112]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[113]  Julien Cohen-Adad,et al.  The Human Connectome Project and beyond: Initial applications of 300mT/m gradients , 2013, NeuroImage.

[114]  Carl-Fredrik Westin,et al.  A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk–Radon transform , 2010, NeuroImage.

[115]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[116]  Jian Cheng,et al.  Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI , 2012 .

[117]  Y. Assaf,et al.  Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review , 2007, Journal of Molecular Neuroscience.

[118]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[119]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[120]  Jelle Veraart,et al.  One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI? , 2015, NeuroImage.

[121]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[122]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[123]  Remco Duits,et al.  Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution , 2015, PloS one.

[124]  Nick C Fox,et al.  Diffusion imaging changes in grey matter in Alzheimer’s disease: a potential marker of early neurodegeneration , 2015, Alzheimer's Research & Therapy.

[125]  Carlo Pierpaoli,et al.  Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure , 2016, NeuroImage.

[126]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[127]  John S. Duncan,et al.  Identical, but not the same: Intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners , 2010, NeuroImage.

[128]  Cheng Guan Koay,et al.  Simple Harmonic Oscillator Based Reconstruction and Estimation for One-Dimensional q-Space Magnetic Resonance (1D-SHORE) , 2013 .

[129]  Paul T. Callaghan,et al.  Pulsed-Gradient Spin-Echo NMR for Planar, Cylindrical, and Spherical Pores under Conditions of Wall Relaxation , 1995 .

[130]  Bengt Jönsson,et al.  Restricted Diffusion in Cylindrical Geometry , 1995 .

[131]  S. Jbabdi,et al.  Exploring fibre orientation dispersion in the corpus callosum : Comparison of Diffusion MRI , Polarized Light Imaging and Histology , 2015 .

[132]  S. Aja‐Fernández,et al.  Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach , 2015, PloS one.

[133]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[134]  J. E. Tanner,et al.  Restricted Self‐Diffusion of Protons in Colloidal Systems by the Pulsed‐Gradient, Spin‐Echo Method , 1968 .

[135]  Rachid Deriche,et al.  Mapping average axon diameters under long diffusion time , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[136]  Derek K. Jones,et al.  Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter , 2016, NeuroImage.

[137]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[138]  B. Hyman,et al.  Studying synapses in human brain with array tomography and electron microscopy , 2013, Nature Protocols.

[139]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[140]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[141]  Jelle Veraart,et al.  In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter , 2016, NeuroImage.

[142]  Els Fieremans,et al.  Revealing mesoscopic structural universality with diffusion , 2014, Proceedings of the National Academy of Sciences.

[143]  Rachid Deriche,et al.  How to get more out of a clinically feasible 64 Gradient dMRI Acquisition: Multi-Shell versus Single-Shell , 2015 .

[144]  D. Bihan,et al.  Relationship between the diffusion time and the diffusion MRI signal observed at 17.2 tesla in the healthy rat brain cortex , 2014, Magnetic resonance in medicine.

[145]  F. Kruggel,et al.  Quantitative mapping of the per‐axon diffusion coefficients in brain white matter , 2015, Magnetic resonance in medicine.

[146]  Carl-Fredrik Westin,et al.  New insights about time‐varying diffusivity and its estimation from diffusion MRI , 2017, Magnetic resonance in medicine.

[147]  Dinggang Shen,et al.  Tensorial Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning , 2015, MICCAI.

[148]  Dmitry S. Novikov,et al.  Mesoscopic structure of neuronal tracts from time-dependent diffusion , 2015, NeuroImage.

[149]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[150]  Victor Alves,et al.  A hitchhiker's guide to diffusion tensor imaging , 2012, Front. Neurosci..

[151]  Luc Brun,et al.  Efficient and robust computation of PDF features from diffusion MR signal , 2009, Medical Image Anal..

[152]  Markus Nilsson,et al.  Accuracy of $q$-Space Related Parameters in MRI: Simulations and Phantom Measurements , 2007, IEEE Transactions on Medical Imaging.

[153]  L. Fuchs,et al.  Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning , 2015, Brain Structure and Function.

[154]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[155]  Philippe Hantraye,et al.  New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo , 2016, Proceedings of the National Academy of Sciences.

[156]  D Le Bihan,et al.  Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study. , 1993, Neuroreport.

[157]  C. H. Neuman Spin echo of spins diffusing in a bounded medium , 1974 .

[158]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[159]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[160]  Moo K. Chung,et al.  A 4D hyperspherical interpretation of q-space , 2015, Medical Image Anal..

[161]  Rachid Deriche,et al.  Ensemble average propagator estimation of axon diameter in diffusion MRI: Implications and limitations , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[162]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[163]  Zhengyi Yang,et al.  Towards higher sensitivity and stability of axon diameter estimation with diffusion‐weighted MRI , 2016, NMR in biomedicine.

[164]  L. Wald,et al.  A 64‐channel 3T array coil for accelerated brain MRI , 2013, Magnetic resonance in medicine.

[165]  M. Catani,et al.  Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true‐tract specific index to characterize white matter diffusion , 2013, Human brain mapping.

[166]  P. Ellen Grant,et al.  Multi-shell diffusion signal recovery from sparse measurements , 2014, Medical Image Anal..

[167]  S. Waxman Determinants of conduction velocity in myelinated nerve fibers , 1980, Muscle & nerve.

[168]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[169]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[170]  Rachid Deriche,et al.  Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI , 2013, Medical Image Anal..

[171]  Hui Zhang,et al.  Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy☆ , 2014, Epilepsy Research.

[172]  A. Friedman,et al.  Fiber dissection technique: lateral aspect of the brain. , 2000, Neurosurgery.

[173]  Cheng Guan Koay,et al.  Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus , 2012, NeuroImage.

[174]  F. Ståhlberg,et al.  Diffusion‐weighted MRI measurements on stroke patients reveal water‐exchange mechanisms in sub‐acute ischaemic lesions , 2009, NMR in biomedicine.

[175]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[176]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.

[177]  F. Ståhlberg,et al.  The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter , 2013, Magnetic Resonance Materials in Physics, Biology and Medicine.

[178]  Rachid Deriche,et al.  An Analytical 3D Laplacian Regularized SHORE Basis and Its Impact on EAP Reconstruction and Microstructure Recovery , 2014 .

[179]  Rachid Deriche,et al.  Solving the inclination sign ambiguity in three dimensional Polarized Light Imaging with a PDE-based method , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[180]  Peter J Basser,et al.  The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q-space diffusion MR: experiments and simulations. , 2008, Journal of magnetic resonance.

[181]  Schwartz,et al.  Probability of return to the origin at short times: A probe of microstructure in porous media. , 1995, Physical review. B, Condensed matter.

[182]  R. Deriche,et al.  Comparison of Biomarkers in Transgenic Alzheimer Rats Using Multi-Shell Diffusion MRI , 2016, MICCAI 2016.

[183]  J. Helpern,et al.  Monte Carlo study of a two‐compartment exchange model of diffusion , 2010, NMR in biomedicine.

[184]  P. Basser Relationships between diffusion tensor and q‐space MRI † , 2002, Magnetic resonance in medicine.

[185]  Carlo Caltagirone,et al.  Cortical Grey Matter and Subcortical White Matter Brain Microstructural Changes in Schizophrenia Are Localised and Age Independent: A Case-Control Diffusion Tensor Imaging Study , 2013, PloS one.

[186]  Jonathan E. Taylor,et al.  Interpretable whole-brain prediction analysis with GraphNet , 2013, NeuroImage.

[187]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[188]  Mark F. Lythgoe,et al.  Two-Compartment Models of the Diffusion MR Signal in Brain White Matter , 2009, MICCAI.

[189]  Lawrence L. Wald,et al.  White matter compartment models for in vivo diffusion MRI at 300mT/m , 2015, NeuroImage.

[190]  Emily C. Collins,et al.  Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease , 2016, NeuroImage.

[191]  P. V. van Zijl,et al.  Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. , 1994, Journal of magnetic resonance. Series B.

[192]  Peter F. Neher,et al.  Tractography-based connectomes are dominated by false-positive connections , 2016, bioRxiv.

[193]  D. Alexander A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features , 2008, Magnetic resonance in medicine.

[194]  Rachid Deriche,et al.  Multiple q-shell diffusion propagator imaging , 2011, Medical Image Anal..

[195]  K. Strimbu,et al.  What are biomarkers? , 2010, Current opinion in HIV and AIDS.

[196]  Y. Cohen,et al.  High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues – a technical review , 2002, NMR in biomedicine.

[197]  D. Le Bihan Molecular diffusion, tissue microdynamics and microstructure. , 1995, NMR in biomedicine.

[198]  Rachid Deriche,et al.  A sensitivity analysis of q-space indices with respect to changes in axonal diameter, dispersion and tissue composition , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[199]  Julien Cohen-Adad,et al.  g-Ratio weighted imaging of the human spinal cord in vivo , 2017, NeuroImage.

[200]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[201]  I. Bone,et al.  ‘The Axon–Structure, function and Pathophysiology’ , 1998, Spinal Cord.

[202]  A. Dale,et al.  Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain , 2010, PloS one.

[203]  R. Deriche,et al.  Diffusion MRI Anisotropy: Modeling, Analysis and Interpretation , 2017 .

[204]  Stephen G. Waxman,et al.  Physiology and Pathobiology of Axons , 1979 .

[205]  M. Mallar Chakravarty,et al.  Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy , 2010, NeuroImage.

[206]  J. Gore,et al.  Theoretical Model for Water Diffusion in Tissues , 1995, Magnetic resonance in medicine.

[207]  J. Cohen-Adad,et al.  Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI , 2011, NeuroImage.

[208]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[209]  Mathews Jacob,et al.  Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data , 2015, Magnetic resonance in medicine.

[210]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[211]  L. Verhoeven,et al.  Can one Hear the Shape of a Drum? , 2015 .

[212]  Daniel C. Alexander,et al.  An Introduction to Computational Diffusion MRI: the Diffusion Tensor and Beyond , 2006, Visualization and Processing of Tensor Fields.