Optical Properties of GaAs/AlO$_{x}$ and Si/SiO $_{x}$ High Contrast Gratings Designed for 980-nm VCSELs

A 3-D, fully vectorial optical numerical model is used to design a high contrast grating for use as the top mirror of a 980-nm arsenide-based vertical-cavity surface-emitting laser. We study the parameters of two high contrast gratings made from GaAs/AlOx and Si/SiOx, respectively. Parameters providing high degrees of reflectivity, high levels of polarization discrimination, and fine tuning of the reflectivity of the high contrast grating are determined. The results demonstrate that both configurations if carefully designed by advanced numerical models can offer better performance in comparison to conventional distributed Bragg reflectors.

[1]  D. Bordel,et al.  III-V-on-Si Photonic Crystal Vertical-Cavity Surface-Emitting Laser Arrays for Wavelength Division Multiplexing , 2013, IEEE Photonics Technology Letters.

[2]  Thomas Käsebier,et al.  High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency , 2013 .

[3]  J. Mørk,et al.  Polarization-independent high-index contrast grating and its fabrication tolerances. , 2013, Applied optics.

[4]  E. Semenova,et al.  1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL , 2013, IEEE Photonics Technology Letters.

[5]  Weijian Yang,et al.  Surface-normal second harmonic emission from AlGaAs high-contrast gratings , 2013 .

[6]  Wanhua Zheng,et al.  Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. , 2012, Optics express.

[7]  N. Olivier,et al.  CMOS-Compatible Ultra-Compact 1.55- μ m Emitting VCSELs Using Double Photonic Crystal Mirrors , 2012, IEEE Photonics Technology Letters.

[8]  B. Ben Bakir,et al.  Thermal, Modal, and Polarization Features of Double Photonic Crystal Vertical-Cavity Surface-Emitting Lasers , 2012, IEEE Photonics Journal.

[9]  B B Bakir,et al.  Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible Integration , 2011, Journal of Lightwave Technology.

[10]  Maciej Dems,et al.  Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs , 2011 .

[11]  C. Chang-Hasnain,et al.  High contrast gratings for integrated optoelectronics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[12]  T. Gaylord,et al.  Theoretical Analysis of Subwavelength High Contrast Grating Reflectors References and Links , 2022 .

[13]  Yi Rao,et al.  1550 nm high contrast grating VCSEL. , 2010, Optics express.

[14]  Ye Zhou,et al.  Size effect of high contrast gratings in VCSELs. , 2009, Optics express.

[15]  C. Chang-Hasnain,et al.  Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning. , 2008, Optics express.

[16]  C. Chang-Hasnain,et al.  A nanoelectromechanical tunable laser , 2008 .

[17]  Markus-Christian Amann,et al.  Semiconductor lasers: Tuning triumph , 2008 .

[18]  J. Mork,et al.  Subwavelength Grating-Mirror VCSEL With a Thin Oxide Gap , 2008, IEEE Photonics Technology Letters.

[19]  C. Chang-Hasnain,et al.  Nano Electromechanical Optoelectronic Tunable VCSEL , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[20]  Connie J. Chang-Hasnain,et al.  Nano electro-mechanical optoelectronic tunable VCSEL. , 2007 .

[21]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[22]  R. Michalzik,et al.  Optimized integrated surface grating design for polarization-stable VCSELs , 2006, IEEE Journal of Quantum Electronics.

[23]  R. Michalzik,et al.  Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[25]  R. Synowicki,et al.  Optical constants of (Al0.98Ga0.02)xOy native oxides , 1998 .

[26]  U. Fano,et al.  The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves) , 1941 .