Stable finite element methods preserving ∇·B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \cdot \varvec{B}=
暂无分享,去创建一个
[1] John N. Shadid,et al. A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD , 2014, SIAM J. Sci. Comput..
[2] M. Tezer-Sezgin,et al. DRBEM Solution of Incompressible MHD Flow withMagnetic Potential , 2013 .
[3] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[4] John N. Shadid,et al. A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD , 2013, SIAM J. Sci. Comput..
[5] W. Cai,et al. Divergence-Free $\boldsymbol{\mathcal{H}}(\mathbf{div})$-Conforming Hierarchical Bases for Magnetohydrodynamics (MHD) , 2013 .
[6] Santiago Badia,et al. On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..
[7] W. Cai,et al. Divergence-Free H(div)-Conforming Hierarchical Bases for Magnetohydrodynamics (MHD) , 2012, 1210.5575.
[8] Blanca Ayuso de Dios,et al. A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem , 2012, Journal of Scientific Computing.
[9] Liwei Xu,et al. Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2012, J. Comput. Phys..
[10] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[11] Jinchao Xu,et al. Global existence, uniqueness and optimal solvers of discretized viscoelastic flow models , 2011 .
[12] Ramon Codina,et al. Approximation of the thermally coupled MHD problem using a stabilized finite element method , 2011, J. Comput. Phys..
[13] Bertram Taetz,et al. An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations , 2010, J. Comput. Phys..
[14] Stephen C. Jardin,et al. Computational Methods in Plasma Physics , 2010 .
[15] Andreas Prohl,et al. Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations , 2010, Math. Comput..
[16] Paul Houston,et al. A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics , 2009, J. Sci. Comput..
[17] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[18] Paul T. Lin,et al. Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..
[19] Chun Liu,et al. An Introduction of Elastic Complex Fluids: An Energetic Variational Approach , 2009 .
[20] A. I. Nesliturk,et al. Two‐level finite element method with a stabilizing subgrid for the incompressible MHD equations , 2009 .
[21] A. Prohl. Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .
[22] James A. Rossmanith,et al. An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..
[23] T. Lelièvre,et al. Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .
[24] Paul Lin,et al. Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport , 2006 .
[25] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[26] John N. Shadid,et al. Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..
[27] T. Rylander,et al. Computational Electromagnetics , 2005 .
[28] Chi-Wang Shu,et al. Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..
[29] Jian-Guo Liu. Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry , 2004 .
[30] Dominik Schötzau,et al. Mixed finite element approximation of incompressible MHD problems based on weighted regularization , 2004 .
[31] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[32] Dominik Schötzau,et al. Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.
[33] J. Guermond,et al. Mixed finite element approximation of an MHD problem involving conducting and insulating regions: The 3D case , 2003 .
[34] D. Balsara,et al. A Comparison between Divergence-Cleaning and Staggered-Mesh Formulations for Numerical Magnetohydrodynamics , 2003, astro-ph/0310728.
[35] L. Zanna,et al. On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2003, astro-ph/0310183.
[36] Dinshaw Balsara,et al. Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.
[37] Dominik Schötzau,et al. Mixed finite elements for incompressible magneto-hydrodynamics , 2003 .
[38] John N. Shadid,et al. On a multilevel preconditioning module for unstructured mesh Krylov solvers: two-level Schwarz , 2002 .
[39] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[40] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[41] Jian-Guo Liu,et al. An energy-preserving MAC-Yee scheme for the incompressible MHD equation , 2001 .
[42] W. Habashi,et al. A finite element method for magnetohydrodynamics , 2001 .
[43] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[44] Michel Fortin,et al. A conservative stabilized finite element method for the magneto-hydrodynamic equations , 1999 .
[45] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[46] L. Demkowicz,et al. hp-adaptive finite elements in electromagnetics , 1999 .
[47] A. Frank,et al. A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998, astro-ph/9807228.
[48] Paul R. Woodward,et al. A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .
[49] Paul R. Woodward,et al. On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .
[50] L. Demkowicz,et al. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .
[51] Xiu Ye,et al. A discrete divergence-free basis for finite element methods , 1997, Numerical Algorithms.
[52] J. C. Simo,et al. Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations☆ , 1996 .
[53] Bo-nan Jiang,et al. The Origin of Spurious Solutions in Computational Electromagnetics , 1996 .
[54] H. Conraths. EDDY CURRENT AND TEMPERATURE SIMULATION IN THIN MOVING METAL STRIPS , 1996 .
[55] M. Gunzburger,et al. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .
[56] C. Richard DeVore,et al. Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics , 1989 .
[57] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[58] Michael L. Norman,et al. Numerical Simulations of a Magnetically Confined Jet , 1986 .
[59] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[60] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[61] Y. R. Fautrelle,et al. Analytical and numerical aspects of the electromagnetic stirring induced by alternating magnetic fields , 1981, Journal of Fluid Mechanics.
[62] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[63] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[64] M. Avila,et al. Magnetohydrodynamics , 2017 .
[65] Sergey Yakovlev,et al. Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2013, J. Comput. Sci..
[66] Paul Lin,et al. INITIAL PERFORMANCE OF FULLY-COUPLED AMG AND APPROXIMATE BLOCK FACTORIZATION PRECONDITIONERS FOR SOLUTION OF IMPLICIT FE RESISTIVE MHD , 2010 .
[67] Shangyou Zhang. Bases for C 0-P 1 divergence-free elements and for C 1P 2 finite elements on union jack grids , 2009 .
[68] A. Bossavit. Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .
[69] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[70] L. Driel-Gesztelyi. An Introduction to Magnetohydrodynamics , 2004 .
[71] Manuel Torrilhon,et al. A Constrained Transport Upwind Scheme for Divergence-free Advection , 2003 .
[72] Jean-Frédéric Gerbeau,et al. Simulations of MHD flows with moving interfaces , 2003 .
[73] Ralf Hiptmair,et al. Symmetric Coupling for Eddy Current Problems , 2002, SIAM J. Numer. Anal..
[74] Matthias Wiedmer,et al. Finite element approximation for equations of magnetohydrodynamics , 2000, Math. Comput..
[75] K. Powell. An Approximate Riemann Solver for Magnetohydrodynamics , 1997 .
[76] N. Ida,et al. Electromagnetics and calculation of fields , 1992 .
[77] J. Brackbill. Fluid modeling of magnetized plasmas , 1985 .
[78] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[79] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[80] S.,et al. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .