Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures

The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8–7 μV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0–60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication.

[1]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[2]  E. Gini,et al.  Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning , 2008, IEEE Journal of Quantum Electronics.

[3]  A. Wittmann,et al.  Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 $\mu$ m , 2009, IEEE Photonics Technology Letters.

[4]  Werner Schrenk,et al.  Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector , 2013, Sensors.

[5]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[6]  R. J. Bell,et al.  Optical properties of Au, Ni, and Pb at submillimeter wavelengths. , 1987, Applied optics.

[7]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[8]  Martin Schnell,et al.  Nanofocusing of mid-infrared energy with tapered transmission lines , 2011 .

[9]  Gottfried Strasser,et al.  Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy. , 2014, Optics express.

[10]  John E. Bertie,et al.  Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm−1 , 1996 .

[11]  Daniel Wasserman,et al.  Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics , 2013 .

[12]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[13]  G. Strasser,et al.  Enhanced light output power of quantum cascade lasers from a tilted front facet. , 2013, Optics express.

[14]  L. Largeau,et al.  Injection of midinfrared surface plasmon polaritons with an integrated device , 2010 .

[15]  G. Strasser,et al.  Photonic crystal slab quantum cascade detector , 2013 .

[16]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[17]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[18]  Federico Capasso,et al.  Ultra-broadband semiconductor laser , 2002, Nature.

[19]  Hans Peter Herzig,et al.  CO2 isotope sensor using a broadband infrared source, a spectrally narrow 4.4 μm quantum cascade detector, and a Fourier spectrometer , 2011 .

[20]  J. Nunemacher,et al.  Optimal management of giant cell arteritis and polymyalgia rheumatica , 2012, Therapeutics and clinical risk management.

[21]  M. Gunde,et al.  Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride and Oxynitride Films , 2001 .

[22]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[23]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[24]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .

[25]  K. Kohler,et al.  Quantum Cascade Detectors , 2009, IEEE Journal of Quantum Electronics.

[26]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[27]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[28]  Federico Capasso,et al.  Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide. , 2002, Applied optics.

[29]  Jan Kischkat,et al.  Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.

[30]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[31]  Werner Schrenk,et al.  A bi-functional quantum cascade device for same-frequency lasing and detection , 2012 .

[32]  Martin A. Brooke,et al.  Progress in Chip-Scale Photonic Sensing , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[33]  Qi Jie Wang,et al.  Small-divergence semiconductor lasers by plasmonic collimation , 2008 .