The MOSDEF Survey: The Evolution of the Mass-Metallicity Relation from $z=0$ to $z\sim3.3$.

We investigate the evolution of galaxy gas-phase metallicity (O/H) over the range $z=0-3.3$ using samples of $\sim300$ galaxies at $z\sim2.3$ and $\sim150$ galaxies at $z\sim3.3$ from the MOSDEF survey. This analysis crucially utilizes different metallicity calibrations at $z\sim0$ and $z>1$ to account for evolving ISM conditions. We find significant correlations between O/H and stellar mass ($M_*$) at $z\sim2.3$ and $z\sim3.3$. The low-mass power law slope of the mass-metallicity relation is remarkably invariant over $z=0-3.3$, such that $\textrm{O/H}\propto M_*^{0.30}$ at all redshifts in this range. At fixed $M_*$, O/H decreases with increasing redshift as dlog(O/H)/d$z=-0.11\pm0.02$. We find no evidence that the fundamental metallicity relation between $M_*$, O/H, and star-formation rate (SFR) evolves out to $z\sim3.3$, with galaxies at $z\sim2.3-3.3$ having O/H within 0.04~dex of local galaxies matched in $M_*$ and SFR on average. We employ analytic chemical evolution models to place constraints on the mass and metal loading factors of galactic outflows. The efficiency of metal removal increases toward lower $M_*$ at fixed redshift, and toward higher redshift at fixed $M_*$. These models suggest that the slope of the mass-metallicity relation is set by the scaling of the metal loading factor of outflows with $M_*$, not by the change in gas fraction as a function of $M_*$. The evolution toward lower O/H at fixed $M_*$ with increasing redshift is driven by both higher gas fraction (leading to stronger dilution of ISM metals) and higher metal removal efficiency, with models suggesting that both effects contribute approximately equally to the observed evolution. These results suggest that the processes governing the smooth baryonic growth of galaxies via gas flows and star formation hold in the same form over at least the past 12~Gyr.

[1]  A. Coil,et al.  The MOSDEF survey: a comprehensive analysis of the rest-optical emission-line properties of z ∼ 2.3 star-forming galaxies , 2021, Monthly Notices of the Royal Astronomical Society.

[2]  A. Coil,et al.  The MOSDEF Survey: The First Direct Measurements of the Nebular Dust Attenuation Curve at High Redshift , 2020, The Astrophysical Journal.

[3]  A. Coil,et al.  The MOSDEF-LRIS Survey: The connection between massive stars and ionized gas in individual galaxies at z ∼ 2 , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  T. Treu,et al.  The Mass–Metallicity Relation at z ≃ 8: Direct-method Metallicity Constraints and Near-future Prospects , 2020, The Astrophysical Journal.

[5]  G. Rieke,et al.  The MOSDEF Survey: The Variation of the Dust Attenuation Curve with Metallicity , 2020, The Astrophysical Journal.

[6]  A. Coil,et al.  The MOSDEF Survey: [S iii] as a New Probe of Evolving Interstellar Medium Conditions , 2019, Astrophysical Journal.

[7]  A. Coil,et al.  The MOSDEF-LRIS Survey: The Interplay Between Massive Stars and Ionized Gas in High-Redshift Star-Forming Galaxies1 , 2019, 1912.10243.

[8]  Rebecca J. Williams,et al.  The KLEVER Survey: spatially resolved metallicity maps and gradients in a sample of 1.2 < z < 2.5 lensed galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  B. Groves,et al.  Automated Mining of the ALMA Archive in the COSMOS Field (A3COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6 , 2019, The Astrophysical Journal.

[10]  R. Bower,et al.  Galactic outflow rates in the EAGLE simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  F. Mannucci,et al.  The mass–metallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  T. Treu,et al.  Evolution of the Stellar Mass–Metallicity Relation. II. Constraints on Galactic Outflows from the Mg Abundances of Quiescent Galaxies , 2019, The Astrophysical Journal.

[13]  Brazil,et al.  Diffuse ionized gas and its effects on nebular metallicity estimates of star-forming galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  A. Coil,et al.  The MOSDEF Survey: Sulfur Emission-line Ratios Provide New Insights into Evolving Interstellar Medium Conditions at High Redshift , 2019, The Astrophysical Journal.

[15]  A. Coil,et al.  The MOSDEF survey: direct-method metallicities and ISM conditions at z ∼ 1.5–3.5 , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  A. Coil,et al.  The MOSDEF Survey: A Census of AGN-driven Ionized Outflows at z = 1.4–3.8 , 2019, The Astrophysical Journal.

[17]  G. Blanc,et al.  A Characteristic Mass Scale in the Mass–Metallicity Relation of Galaxies , 2019, The Astrophysical Journal.

[18]  B. Garilli,et al.  The VANDELS survey: the stellar metallicities of star-forming galaxies at $\mathbf {2.5\,\, \lt\,\, z\,\, \lt\,\, 5.0}$ , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  A. Strom,et al.  Column Density, Kinematics, and Thermal State of Metal-bearing Gas within the Virial Radius of z ∼ 2 Star-forming Galaxies in the Keck Baryonic Structure Survey , 2019, The Astrophysical Journal.

[20]  V. Springel,et al.  First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  C. Churchill,et al.  Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback , 2019, The Astrophysical Journal.

[23]  Olivier Ilbert,et al.  The FMOS-COSMOS Survey of Star-forming Galaxies at z ∼ 1.6. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies , 2018, The Astrophysical Journal Supplement Series.

[24]  A. Coil,et al.  The MOSDEF Survey: Significant Evolution in the Rest-frame Optical Emission Line Equivalent Widths of Star-forming Galaxies at z = 1.4–3.8 , 2018, The Astrophysical Journal.

[25]  F. Mannucci,et al.  Fundamental metallicity relation in CALIFA, SDSS-IV MaNGA, and high-z galaxies , 2018, Astronomy & Astrophysics.

[26]  P. Kroupa,et al.  Impact of metallicity and star formation rate on the time-dependent, galaxy-wide stellar initial mass function , 2018, Astronomy & Astrophysics.

[27]  M. Lara-L'opez,et al.  Testing strong line metallicity diagnostics at z ∼ 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  S. Wuyts,et al.  Kiloparsec Scale Properties of Star Formation Driven Outflows at z ∼ 2.3 in the SINS/zC-SINF AO Survey , 2018, The Astrophysical Journal.

[29]  C. Leitherer,et al.  Metal-enriched galactic outflows shape the mass–metallicity relationship , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  S. Wuyts,et al.  The KMOS3D Survey: Demographics and Properties of Galactic Outflows at z = 0.6–2.7 , 2018, The Astrophysical Journal.

[31]  A. Coil,et al.  The MOSDEF Survey: The Nature of Mid-infrared Excess Galaxies and a Comparison of IR and UV Star Formation Tracers at z ∼ 2 , 2018, The Astrophysical Journal.

[32]  L. Kewley,et al.  “Direct” Gas-phase Metallicity in Local Analogs of High-redshift Galaxies: Empirical Metallicity Calibrations for High-redshift Star-forming Galaxies , 2018, The Astrophysical Journal.

[33]  D. Stark,et al.  Dust in the Wind: Composition and Kinematics of Galaxy Outflows at the Peak Epoch of Star Formation , 2018, The Astrophysical Journal.

[34]  A. Strom,et al.  Dust Attenuation, Star Formation, and Metallicity in z ∼ 2–3 Galaxies from KBSS-MOSFIRE , 2018, The Astrophysical Journal.

[35]  D. Schiminovich,et al.  xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe , 2018, 1802.02373.

[36]  O. H. Ramírez-Agudelo,et al.  An excess of massive stars in the local 30 Doradus starburst , 2018, Science.

[37]  B. Garilli,et al.  The VANDELS survey: dust attenuation in star-forming galaxies at z=3-4 , 2017, 1712.01292.

[38]  A. Strom,et al.  Measuring the Physical Conditions in High-redshift Star-forming Galaxies: Insights from KBSS-MOSFIRE , 2017, The Astrophysical Journal.

[39]  V. Springel,et al.  The evolution of the mass-metallicity relation and its scatter in IllustrisTNG , 2017, Monthly Notices of the Royal Astronomical Society.

[40]  A. Coil,et al.  The MOSDEF Survey: A Stellar Mass–SFR–Metallicity Relation Exists at z ∼ 2.3 , 2017, 1711.00224.

[41]  C. Casey,et al.  The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5 , 2017, 1710.06872.

[42]  V. Springel,et al.  Simulating a metallicity-dependent initial mass function: consequences for feedback and chemical abundances , 2017, Monthly Notices of the Royal Astronomical Society.

[43]  D. Schiminovich,et al.  xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies , 2017, 1710.02157.

[44]  L. Cortese,et al.  The role of atomic hydrogen in regulating the scatter of the mass-metallicity relation , 2017, 1709.07890.

[45]  I. Smail,et al.  The Interstellar Medium in [O iii]-selected Star-forming Galaxies at z ∼ 3.2 , 2017, 1709.06731.

[46]  J. Dunlop,et al.  Dust attenuation in 2, 2017, 1709.06102.

[47]  R. Yan,et al.  Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination , 2017, 1708.04625.

[48]  A. Coil,et al.  The MOSDEF Survey: First Measurement of Nebular Oxygen Abundance at z > 4 , 2017, 1707.05331.

[49]  S. Charlot,et al.  Ultraviolet spectra of extreme nearby star-forming regions – approaching a local reference sample for JWST , 2017, 1706.00881.

[50]  R. Bouwens,et al.  The HDUV Survey: A Revised Assessment of the Relationship between UV Slope and Dust Attenuation for High-redshift Galaxies , 2017, 1705.09302.

[51]  K. Schawinski,et al.  The final data release of ALLSMOG: A survey of CO in typical local low- M ∗ star-forming galaxies , 2017, 1705.05851.

[52]  R. Bower,et al.  Galaxy metallicity scaling relations in the EAGLE simulations , 2017, 1704.00006.

[53]  Claus Leitherer,et al.  The mass and momentum outflow rates of photoionized galactic outflows , 2017, 1702.07351.

[54]  O. Ilbert,et al.  Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift , 2017, 1702.04729.

[55]  B. Weiner,et al.  PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions , 2017, 1702.01140.

[56]  M. Bershady,et al.  SDSS-IV MaNGA : the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements , 2016, 1612.02000.

[57]  C. Churchill,et al.  Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift z ≈ 0.2 , 2016, 1611.04579.

[58]  P. Hopkins,et al.  The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations , 2016, 1610.08523.

[59]  P. Hopkins,et al.  MUFASA: Galaxy star formation, gas, and metal properties across cosmic time , 2016, 1610.01626.

[60]  A. Coil,et al.  THE MOSDEF SURVEY: AGN MULTI-WAVELENGTH IDENTIFICATION, SELECTION BIASES, AND HOST GALAXY PROPERTIES , 2016, 1608.05890.

[61]  L. Hunt,et al.  Coevolution of metallicity and star formation in galaxies to z=3.7: I. A fundamental plane , 2016, 1608.05417.

[62]  A. Strom,et al.  Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio , 2016, 1608.02587.

[63]  R. Giovanelli,et al.  Molecular and atomic gas along and across the main sequence of star-forming galaxies , 2016, 1607.05289.

[64]  T. Yuan,et al.  COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT z ∼ 2 , 2016, 1607.00014.

[65]  P. Hopkins,et al.  Metal flows of the circumgalactic medium, and the metal budget in galactic haloes , 2016, 1606.09252.

[66]  J. Dalcanton,et al.  EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE , 2016, 1606.08850.

[67]  J. Wagg,et al.  Galaxy metallicities depend primarily on stellar mass and molecular gas mass , 2016, 1606.04102.

[68]  F. Mannucci,et al.  New fully empirical calibrations of strong-line metallicity indicators in star forming galaxies , 2016, 1610.06939.

[69]  A. Strom,et al.  RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.

[70]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM , 2016, 1604.06802.

[71]  R. Bender,et al.  THE EVOLUTION OF METALLICITY AND METALLICITY GRADIENTS FROM z = 2.7 TO 0.6 WITH KMOS3D , 2016, 1603.01139.

[72]  P. Capak,et al.  ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES AT Z ≃ 3.3 FROM NEAR-IR SPECTROSCOPY , 2016, 1602.02779.

[73]  T. Nagao,et al.  THE METAL ABUNDANCES ACROSS COSMIC TIME ( ) SURVEY. II. EVOLUTION OF THE MASS–METALLICITY RELATION OVER 8 BILLION YEARS, USING [O iii] λ4363 Å BASED METALLICITIES , 2016, 1602.01098.

[74]  B. Andrews,et al.  A recalibration of strong-line oxygen abundance diagnostics via the direct method and implications for the high-redshift universe , 2016, 1602.01087.

[75]  J. Schombert,et al.  THE SMALL SCATTER OF THE BARYONIC TULLY–FISHER RELATION , 2015, 1512.04543.

[76]  O. Ilbert,et al.  REST-UV ABSORPTION LINES AS METALLICITY ESTIMATOR: THE METAL CONTENT OF STAR-FORMING GALAXIES AT z ∼ 5 , 2015, 1512.00018.

[77]  J. Trump,et al.  YOUNG, STAR-FORMING GALAXIES AND THEIR LOCAL COUNTERPARTS: THE EVOLVING RELATIONSHIP OF MASS–SFR–METALLICITY SINCE z ∼ 2.1 , 2015, 1511.08243.

[78]  A. Coil,et al.  THE MOSDEF SURVEY: DYNAMICAL AND BARYONIC MASSES AND KINEMATIC STRUCTURES OF STAR-FORMING GALAXIES AT 1.4 ≤ z ≤ 2.6 , 2015, 1511.03272.

[79]  R. Bower,et al.  The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations , 2015, 1510.08067.

[80]  P. Hopkins,et al.  How Stellar Feedback Simultaneously Regulates Star Formation and Drives Outflows , 2015, 1510.05650.

[81]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[82]  A. Coil,et al.  THE MOSDEF SURVEY: ELECTRON DENSITY AND IONIZATION PARAMETER AT z ∼ 2.3 , 2015, 1509.03636.

[83]  K. Glazebrook,et al.  The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass-metallicity relation and the fundamental metallicity relation at $z\sim1.4$ , 2015, 1508.01512.

[84]  A. Pontzen,et al.  IN-N-OUT: THE GAS CYCLE FROM DWARFS TO SPIRAL GALAXIES , 2015, 1508.00007.

[85]  C. Leitherer,et al.  THE SYSTEMATIC PROPERTIES OF THE WARM PHASE OF STARBURST-DRIVEN GALACTIC WINDS , 2015, 1507.05622.

[86]  A. Coil,et al.  THE MOSDEF SURVEY: DISSECTING THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION USING Hα AND Hβ EMISSION LINES AT z ∼ 2 , 2015, 1507.03017.

[87]  J. Wagg,et al.  Molecular gas as the driver of fundamental galactic relations , 2015, 1507.01004.

[88]  K. Schawinski,et al.  Dust attenuation in z $\sim$ 1 galaxies from Herschel and 3D-HST H$\alpha$ measurements , 2015, 1507.00005.

[89]  O. Ilbert,et al.  Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.

[90]  R. Davé,et al.  ON THE MASS–METALLICITY–STAR FORMATION RATE RELATION FOR GALAXIES AT z∼2 , 2015, 1506.03080.

[91]  A. Coil,et al.  THE MOSDEF SURVEY: MEASUREMENTS OF BALMER DECREMENTS AND THE DUST ATTENUATION CURVE AT REDSHIFTS z ∼ 1.4–2.6 , 2015, 1504.02782.

[92]  M. Cooper,et al.  TEMPERATURE-BASED METALLICITY MEASUREMENTS AT z = 0.8: DIRECT CALIBRATION OF STRONG-LINE DIAGNOSTICS AT INTERMEDIATE REDSHIFT , 2015, 1504.02417.

[93]  Northwestern,et al.  The origin and evolution of the galaxy mass–metallicity relation , 2015, 1504.02097.

[94]  R. Maiolino,et al.  Modern yields per stellar generation: the effect of the IMF , 2015, 1503.08300.

[95]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[96]  L. Kewley,et al.  THE ABSENCE OF AN ENVIRONMENTAL DEPENDENCE IN THE MASS–METALLICITY RELATION AT z = 2 , 2015, 1503.05559.

[97]  P. Hopkins,et al.  Gusty, gaseous flows of FIRE: Galactic winds in cosmological simulations with explicit stellar feedback , 2015, 1501.03155.

[98]  Alison L. Coil,et al.  THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR ∼1500 H-SELECTED GALAXIES AT 1.37 ≤ z ≤ 3.8 ?> , 2014, 1412.1835.

[99]  C. Ly,et al.  METAL-POOR, STRONGLY STAR-FORMING GALAXIES IN THE DEEP2 SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS, TEMPERATURE-BASED METALLICITY, AND STAR FORMATION RATE , 2014, 1412.1834.

[100]  Christophe Morisset,et al.  PyNeb: a new tool for analyzing emission lines - I. Code description and validation of results , 2014, 1410.6662.

[101]  A. Coil,et al.  THE MOSDEF SURVEY: EXCITATION PROPERTIES OF z ∼ 2.3 STAR-FORMING GALAXIES , 2014, 1409.7071.

[102]  A. Coil,et al.  THE MOSDEF SURVEY: OPTICAL ACTIVE GALACTIC NUCLEUS DIAGNOSTICS AT z ∼ 2.3 , 2014, 1409.6522.

[103]  F. Walter,et al.  ALLSMOG: An APEX low-redshift legacy survey for molecular gas - I. molecular gas scaling relations, and the effect of the CO/H2 conversion factor , 2014, 1409.4764.

[104]  B. Weiner,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[105]  Benjamin D. Johnson,et al.  Spitzer Local Volume Legacy (LVL) SEDs and physical properties , 2014, 1409.0847.

[106]  Alison L. Coil,et al.  THE MOSDEF SURVEY: MASS, METALLICITY, AND STAR-FORMATION RATE AT z ∼ 2.3 , 2014, 1408.2521.

[107]  D. Elbaz,et al.  GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4 , 2014, 1407.5072.

[108]  S. Lilly,et al.  THE MASS–METALLICITY AND FUNDAMENTAL METALLICITY RELATIONS AT z > 2 USING VERY LARGE TELESCOPE AND SUBARU NEAR-INFRARED SPECTROSCOPY OF zCOSMOS GALAXIES , 2014, 1406.6069.

[109]  R. Bender,et al.  A CONSISTENT STUDY OF METALLICITY EVOLUTION AT 0.8 < z < 2.6 , 2014, 1405.6590.

[110]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[111]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[112]  T. Okamoto,et al.  Reproducing cosmic evolution of galaxy population from z = 4 to 0 , 2014, 1404.7579.

[113]  L. Kewley,et al.  THE UNIVERSAL RELATION OF GALACTIC CHEMICAL EVOLUTION: THE ORIGIN OF THE MASS–METALLICITY RELATION , 2014, 1404.7526.

[114]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[115]  R. Maiolino,et al.  Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies , 2014, Proceedings of the International Astronomical Union.

[116]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[117]  F. Mannucci,et al.  Metallicity evolution, metallicity gradients, and gas fractions at z ~ 3.4 , 2013, 1311.4576.

[118]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[119]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. II. THE MASS–METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION , 2013, 1310.4950.

[120]  D. Weinberg,et al.  A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.

[121]  J. Dunlop,et al.  The Mass-Metallicity-SFR Relation at z >~ 2 with 3D-HST , 2013, 1310.0816.

[122]  Juna A. Kollmeier,et al.  Tracing inflows and outflows with absorption lines in circumgalactic gas , 2013, 1309.5951.

[123]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION , 2013, 1309.4774.

[124]  P. McCarthy,et al.  LOW MASSES AND HIGH REDSHIFTS: THE EVOLUTION OF THE MASS–METALLICITY RELATION , 2013, 1309.4458.

[125]  I. Smail,et al.  A fundamental metallicity relation for galaxies at z = 0.84–1.47 from HiZELS , 2013, 1309.0506.

[126]  K. Nomoto,et al.  Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies , 2013 .

[127]  L. Kewley,et al.  THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME , 2013, 1307.0508.

[128]  C. Steidel,et al.  THE MASS–METALLICITY RELATION OF A z ∼ 2 PROTOCLUSTER WITH MOSFIRE , 2013, 1306.6334.

[129]  A. Coil,et al.  SCATTERED EMISSION FROM z ∼ 1 GALACTIC OUTFLOWS , 2013, 1304.6405.

[130]  F. Mannucci,et al.  A fundamental relation between the metallicity, gas content, and stellar mass of local galaxies , 2013, 1304.4940.

[131]  C. Carollo,et al.  GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.

[132]  J. Richard,et al.  TESTING THE UNIVERSALITY OF THE FUNDAMENTAL METALLICITY RELATION AT HIGH REDSHIFT USING LOW-MASS GRAVITATIONALLY LENSED GALAXIES , 2013, 1302.3614.

[133]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[134]  B. Andrews,et al.  THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.

[135]  Sean Adkins,et al.  MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory , 2012, Other Conferences.

[136]  J. Hjorth,et al.  The low-mass end of the fundamental relation for gravitationally lensed star-forming galaxies at 1 < z < 6† , 2012, 1209.0767.

[137]  G. Zamorani,et al.  THE SINS/zC-SINF SURVEY of z ∼ 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES , 2012, 1207.5897.

[138]  Benjamin D. Johnson,et al.  DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES , 2012, 1205.6782.

[139]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[140]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[141]  J. Rigby,et al.  CONSTRAINTS ON THE LOW-MASS END OF THE MASS–METALLICITY RELATION AT z = 1–2 FROM LENSED GALAXIES , 2012, 1202.5267.

[142]  James S. Dunlop,et al.  The physics of the fundamental metallicity relation , 2012, 1202.4770.

[143]  V. Wild,et al.  Evolution of the Stellar Mass-Metallicity Relation Since z=0.75 , 2011, 1112.3300.

[144]  Benjamin D. Johnson,et al.  DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. II. COMBINATIONS OF ULTRAVIOLET AND INFRARED TRACERS , 2011, 1108.2837.

[145]  K. Finlator,et al.  An analytic model for the evolution of the stellar, gas and metal content of galaxies , 2011, 1108.0426.

[146]  G. Kauffmann,et al.  The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.

[147]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[148]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[149]  M. Peeples,et al.  Constraints on star formation driven galaxy winds from the mass–metallicity relation at z= 0 , 2010, 1007.3743.

[150]  F. Matteucci,et al.  Quantifying the uncertainties of chemical evolution studies II. Stellar yields , 2010, 1006.5863.

[151]  L. Kewley,et al.  THE MASS–METALLICITY AND LUMINOSITY–METALLICITY RELATIONS FROM DEEP2 AT z ∼ 0.8 , 2010, 1006.4877.

[152]  M. S'anchez-Portal,et al.  A fundamental plane for field star-forming galaxies , 2010, 1005.0509.

[153]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[154]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[155]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[156]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[157]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[158]  Thijs van der Hulst,et al.  Cold gas accretion in galaxies , 2008, 0803.0109.

[159]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[160]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[161]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[162]  A. McConnachie,et al.  Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.

[163]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[164]  P. Kroupa,et al.  A Possible Origin of the Mass–Metallicity Relation of Galaxies , 2006, Proceedings of the International Astronomical Union.

[165]  J. Dalcanton The Metallicity of Galaxy Disks: Infall versus Outflow , 2006, astro-ph/0608590.

[166]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[167]  Robert D. Gehrz,et al.  On Extending the Mass-Metallicity Relation of Galaxies by 2.5 Decades in Stellar Mass , 2006, astro-ph/0605036.

[168]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[169]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[170]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[171]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[172]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[173]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[174]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[175]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[176]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[177]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[178]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[179]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[180]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[181]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[182]  P. Storey,et al.  Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases , 2000 .

[183]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[184]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[185]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[186]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[187]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[188]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[189]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[190]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[191]  M. Schmidt The Rate of Star Formation , 1959 .

[192]  J. Brinkmann,et al.  THE ORIGIN OF THE MASS–METALLICITY RELATION: INSIGHTS FROM 53,000 STAR-FORMING GALAXIES IN THE SDSS , 2008 .

[193]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[194]  E. Salpeter The Luminosity function and stellar evolution , 1955 .