Untangling the web of functional and physical interactions in yeast

An analysis of an integrated network of over 150,000 functional and physical interactions in yeast suggests that the network can be hierarchically decomposed into themes and thematic maps. This decomposition can be used to explore the organizational principles of integrated biological networks within cells.

[1]  P. Bork,et al.  Dynamic Complex Formation During the Yeast Cell Cycle , 2005, Science.

[2]  Bernhard Palsson,et al.  Two-dimensional annotation of genomes , 2004, Nature Biotechnology.

[3]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[4]  Muffy Calder,et al.  When kinases meet mathematics: the systems biology of MAPK signalling , 2005, FEBS letters.

[5]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[6]  Arun K. Ramani,et al.  Protein interaction networks from yeast to human. , 2004, Current opinion in structural biology.

[7]  J. Boeke,et al.  DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray , 2003, Nature Genetics.

[8]  Jason A. Papin,et al.  The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. , 2004, Biophysical journal.

[9]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[10]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[11]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[12]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[13]  Bernhard O Palsson,et al.  Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. , 2004, Trends in biochemical sciences.

[14]  S. L. Wong,et al.  Combining biological networks to predict genetic interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[16]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[17]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[18]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[19]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[20]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[21]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[22]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[23]  Eric D Siggia,et al.  Computational methods for transcriptional regulation. , 2005, Current opinion in genetics & development.

[24]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[25]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[26]  Markus J. Herrgård,et al.  Reconciling gene expression data with known genome-scale regulatory network structures. , 2003, Genome research.

[27]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[28]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.