Rotation–Covariant Texture Learning Using Steerable Riesz Wavelets

We propose a texture learning approach that exploits local organizations of scales and directions. First, linear combinations of Riesz wavelets are learned using kernel support vector machines. The resulting texture signatures are modeling optimal class-wise discriminatory properties. The visualization of the obtained signatures allows verifying the visual relevance of the learned concepts. Second, the local orientations of the signatures are optimized to maximize their responses, which is carried out analytically and can still be expressed as a linear combination of the initial steerable Riesz templates. The global process is iteratively repeated to obtain final rotation-covariant texture signatures. Rapid convergence of class-wise signatures is observed, which demonstrates that the instances are projected into a feature space that leverages the local organizations of scales and directions. Experimental evaluation reveals average classification accuracies in the range of 97% to 98% for the Outex_TC_00010, the Outex_TC_00012, and the Contrib_TC_00000 suites for even orders of the Riesz transform, and suggests high robustness to changes in images orientation and illumination. The proposed framework requires no arbitrary choices of scales and directions and is expected to perform well in a large range of computer vision applications.

[1]  Nicolas Chenouard,et al.  Steerable Pyramids and Tight Wavelet Frames in , 2011 .

[2]  D. D.-Y. Po,et al.  Directional multiscale modeling of images using the contourlet transform , 2006, IEEE Transactions on Image Processing.

[3]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[4]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Fakhry M. Khellah,et al.  Texture Classification Using Dominant Neighborhood Structure , 2011, IEEE Transactions on Image Processing.

[6]  Kristin J. Dana,et al.  3D Texture Recognition Using Bidirectional Feature Histograms , 2004, International Journal of Computer Vision.

[7]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[8]  Cordelia Schmid,et al.  Constructing models for content-based image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Gerald Schaefer,et al.  A comparative analysis of local binary pattern texture classification , 2012, 2012 Visual Communications and Image Processing.

[10]  Paul F. Whelan,et al.  Local binary patterns versus signal processing texture analysis: a study from a performance evaluati , 2012 .

[11]  Dimitri Van De Ville,et al.  Lung Texture Classification Using Locally-Oriented Riesz Components , 2011, MICCAI.

[12]  R. Porter,et al.  Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes , 1997 .

[13]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[15]  Eero P. Simoncelli,et al.  Steerable wedge filters for local orientation analysis , 1996, IEEE Trans. Image Process..

[16]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[18]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[19]  David L. Donoho,et al.  Ridge Functions and Orthonormal Ridgelets , 2001, J. Approx. Theory.

[20]  Henning Müller,et al.  Rotation-covariant visual concept detection using steerable Riesz wavelets and bags of visual words , 2013, Optics & Photonics - Optical Engineering + Applications.

[21]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[22]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[24]  Dimitri Van De Ville,et al.  Steerable pyramids and tight wavelet frames in L 2 ( R d ) , 2011 .

[25]  Matti Pietikäinen,et al.  Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2000, ECCV.

[26]  Minh N. Do,et al.  Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models , 2002, IEEE Trans. Multim..

[27]  Nong Sang,et al.  Local Binary Pattern histogram based Texton learning for texture classification , 2011, 2011 18th IEEE International Conference on Image Processing.

[28]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Dimitri Van De Ville,et al.  Rotation-covariant texture analysis of 4D dual-energy CT as an indicator of local pulmonary perfusion , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[30]  Baltasar Beferull-Lozano,et al.  Rotation-invariant texture retrieval with gaussianized steerable pyramids , 2005, IEEE Transactions on Image Processing.

[31]  Baltasar Beferull-Lozano,et al.  Rotation-invariant texture retrieval with gaussianized steerable pyramids , 2006, IEEE Trans. Image Process..

[32]  Zhenhua Guo,et al.  Is local dominant orientation necessary for the classification of rotation invariant texture? , 2013, Neurocomputing.

[33]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[34]  Zhenghua Yu,et al.  Invariant Features of Local Texturesa rotation invariant local texture descriptor , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Dimitri Van De Ville,et al.  Wavelet Steerability and the Higher-Order Riesz Transform , 2010, IEEE Transactions on Image Processing.

[36]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[38]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[39]  Thierry Blu,et al.  Isotropic polyharmonic B-splines: scaling functions and wavelets , 2005, IEEE Transactions on Image Processing.

[40]  P. Fua,et al.  Learning rotational features for filament detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[42]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[43]  D. Marr,et al.  An Information Processing Approach to Understanding the Visual Cortex , 1980 .

[44]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Vincent Lepetit,et al.  Accurate and Efficient Linear Structure Segmentation by Leveraging Ad Hoc Features with Learned Filters , 2012, MICCAI.

[46]  Minh N. Do,et al.  Contourlets: a directional multiresolution image representation , 2002, Proceedings. International Conference on Image Processing.

[47]  Yong Xu,et al.  A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .

[49]  Changxin Gao,et al.  Pyramid-Based Multi-structure Local Binary Pattern for Texture Classification , 2010, ACCV.

[50]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Michael Unser,et al.  A Unifying Parametric Framework for 2D Steerable Wavelet Transforms , 2013, SIAM J. Imaging Sci..

[52]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[53]  Zhenhua Guo,et al.  Local directional derivative pattern for rotation invariant texture classification , 2011, Neural Computing and Applications.

[54]  Gábor Székely,et al.  Oblique Random Forests for 3-D Vessel Detection Using Steerable Filters and Orthogonal Subspace Filtering , 2012, MCV.

[55]  Xueming Qian,et al.  PLBP: An effective local binary patterns texture descriptor with pyramid representation , 2011, Pattern Recognit..

[56]  Donald A. Adjeroh,et al.  Comparison of Texture Analysis Schemes Under Nonideal Conditions , 2011, IEEE Transactions on Image Processing.

[57]  Salem Nasri,et al.  Rotation invariant texture classification using Support Vector Machines , 2011, 2011 International Conference on Communications, Computing and Control Applications (CCCA).

[58]  Dimitri Van De Ville,et al.  Multiscale Lung Texture Signature Learning Using the Riesz Transform , 2012, MICCAI.

[59]  Gwénolé Quellec,et al.  Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval , 2012, IEEE Transactions on Image Processing.

[60]  Jana Reinhard,et al.  Textures A Photographic Album For Artists And Designers , 2016 .

[61]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[62]  Paul Southam,et al.  Towards Texture Classification in Real Scenes , 2005, BMVC.