A reliable modification of the cross rule for rational Hermite interpolation
暂无分享,去创建一个
[1] Florent Cordellier,et al. Utilisation de l’invariance Homographique dans les Algorithmes de Losange , 1984 .
[2] Bernhard Beckermann,et al. The structure of the singular solution table of the M-Pade´ approximation problem , 1990 .
[3] Florent Cordellier. Interpolation rationnelle et autres questions : aspects algorithmiques et numériques , 1989 .
[4] G. Claessens,et al. On the Newton-Padé approximation problem , 1978 .
[5] G. Claessens. A new algorithm for osculatory rational interpolation , 1976 .
[6] Martin H. Gutknecht,et al. Continued fractions associated with the Newton-Padé table , 1989 .
[7] H. E. Salzer,et al. Note on osculatory rational interpolation , 1962 .
[8] G. Claessens,et al. A useful identity for the rational Hermite interpolation table , 1978 .
[9] Herbert Arndt. Ein verallgemeinerter Kettenbruch-Algorithmus zur rationalen Hermite-Interpolation , 1980 .
[10] F. Cordellier,et al. Démonstration algébrique de l'extension de l'identité de Wynn aux tables de Padé non normales , 1979 .
[11] Helmut Werner,et al. A reliable method for rational interpolation , 1979 .
[12] Guido Claessens. On the structure of the Newton-Padé table , 1978 .
[13] Adhemar Bultheel,et al. A new approach to the rational interpolation problem , 1989 .