Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications

Abstract A vapor transport equilibration technique has been used to improve the homogeneity and adjust the Li/Nb ratio in small LiNbO 3 single crystal rods and fibers grown by the laser heated pedestal growth method. When equilibrated with a Li-rich powder, containing a mixture of LiNbO 3 and Li 3 NbO 4 , crystal of stoichiometric composition can be obtained. This treatment was used to raise the phase-matching temperature of congruent LiNbO 3 for second harmonic generation of 1064 nm radiation from 4 to 238°C. The 238°C phase-matching temperature is above the annealing temperature for photorefractive damage. This property, along with the good optical homogeneity, should allow efficient conversion of CW laser sources. We also, for the first time, demonstrated the doubling of 954 nm radiation in a LiNbO 3 crystal.

[1]  J. Midwinter ASSESSMENT OF LITHIUM‐META‐NIOBATE FOR NONLINEAR OPTICS , 1967 .

[2]  G. D. Boyd,et al.  Effect of Optical Inhomogeneities on Phase Matching in Nonlinear Crystals , 1970 .

[3]  R. Byer,et al.  Growth of High‐Quality LiNbO3 Crystals from the Congruent Melt , 1970 .

[4]  I P Kaminow,et al.  Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate. , 1974, Applied optics.

[5]  G. D. Boyd,et al.  OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3 , 1966 .

[6]  G. E. Peterson,et al.  Nonstoichiometry and Crystal Growth of Lithium Niobate , 1971 .

[7]  Alastair M. Glass,et al.  Control of the Susceptibility of Lithium Niobate to Laser‐Induced Refractive Index Changes , 1971 .

[8]  L. O. Svaasand,et al.  Solid-solution range of LiNbO3 , 1974 .

[9]  D. A. Bryan,et al.  Threshold effect in Mg‐doped lithium niobate , 1984 .

[10]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[11]  R. Smith,et al.  CURIE TEMPERATURE, BIREFRINGENCE, AND PHASE‐MATCHING TEMPERATURE VARIATIONS IN LiNbO3 AS A FUNCTION OF MELT STOICHIOMETRY , 1968 .

[12]  P. Koidl,et al.  Current induced periodic ferroelectric domain structures in LiNbO3 applied for efficient nonlinear optical frequency mixing , 1985 .

[13]  W. J. Alford,et al.  DEPENDENCE OF SECOND‐HARMONIC PHASE‐MATCHING TEMPERATURE IN LiNbO3 CRYSTALS ON MELT COMPOSITION , 1968 .

[14]  Martin M. Fejer,et al.  Ferroelectric domain structures in LiNbO3 single-crystal fibers , 1986 .

[15]  Robert L. Byer,et al.  Efficient second‐harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3 , 1981 .

[16]  Larry E. Halliburton,et al.  Point defects in Mg‐doped lithium niobate , 1985 .

[17]  Robert S. Feigelson,et al.  Pulling optical fibers , 1986 .

[18]  D. A. Bryan,et al.  Magnesium-doped lithium niobate for higher optical power applications , 1985 .

[19]  Novel Uses of Gravimetry in the Processing of Crystalline Ceramics , 1978 .

[20]  S. Sriram,et al.  Integrated Optical Circuit Engineering , 1985 .

[21]  I. Saunders Crystal growth '78 , 1979 .

[22]  Duan Feng,et al.  Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains , 1980 .

[23]  L. G. D. Shazer Laser and nonlinear optical materials , 1986 .

[24]  M. Fejer,et al.  Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers , 1984 .

[25]  C. Brandle,et al.  Congruent Composition and Li‐Rich Phase Boundary of LiNbO3 , 1985 .

[26]  Optical Index Damage In Electrooptic Crystals , 1974 .

[27]  Robert Gerson,et al.  Increased optical damage resistance in lithium niobate , 1984 .

[28]  B. C. Grabmaier,et al.  Growth and investigation of MgO-doped LiNbO3 , 1986 .