Mobile proactive secret sharing

MPSS is a new way to do proactive secret sharing in asynchronous networks. MPSS provides mobility: The group of nodes holding the shares of the secret can change at each resharing, which is essential in a long-lived system. MPSS additionally allows the number of tolerated faulty shareholders to change when the secret is moved so that the system can tolerate more (or fewer) corruptions; this allows reconfiguration on the fly to accommodate changes in the environment.

[1]  Victor Shoup,et al.  Secure and Efficient Asynchronous Broadcast Protocols , 2001, CRYPTO.

[2]  Tatsuaki Okamoto,et al.  Secure Integration of Asymmetric and Symmetric Encryption Schemes , 1999, CRYPTO.

[3]  Torben P. Pedersen A Threshold Cryptosystem without a Trusted Party (Extended Abstract) , 1991, EUROCRYPT.

[4]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[5]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[6]  Jeannette M. Wing,et al.  Verifiable secret redistribution for archive systems , 2002, First International IEEE Security in Storage Workshop, 2002. Proceedings..

[7]  Ran Canetti,et al.  A Forward-Secure Public-Key Encryption Scheme , 2003, Journal of Cryptology.

[8]  Avi Wigderson,et al.  The Discrete Logarithm Hides O(log n) Bits , 1988, SIAM J. Comput..

[9]  Sam Toueg,et al.  Asynchronous consensus and broadcast protocols , 1985, JACM.

[10]  Robbert van Renesse,et al.  APSS: proactive secret sharing in asynchronous systems , 2005, TSEC.

[11]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[12]  Miguel Castro,et al.  Practical byzantine fault tolerance and proactive recovery , 2002, TOCS.

[13]  Douglas R. Stinson,et al.  Unconditionally Secure Proactive Secret Sharing Scheme with Combinatorial Structures , 1999, Selected Areas in Cryptography.

[14]  Moti Yung,et al.  Optimal-resilience proactive public-key cryptosystems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[15]  Hugo Krawczyk,et al.  Robust Threshold DSS Signatures , 1996, EUROCRYPT.

[16]  Dan R. K. Ports,et al.  Census: Location-Aware Membership Management for Large-Scale Distributed Systems , 2009, USENIX Annual Technical Conference.

[17]  Hugo Krawczyk,et al.  Simple forward-secure signatures from any signature scheme , 2000, IACR Cryptol. ePrint Arch..

[18]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[19]  Tal Rabin,et al.  A Simplified Approach to Threshold and Proactive RSA , 1998, CRYPTO.

[20]  Yvo Desmedt,et al.  Shared Generation of Authenticators and Signatures (Extended Abstract) , 1991, CRYPTO.

[21]  Daniel Bleichenbacher,et al.  Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1 , 1998, CRYPTO.

[22]  Mihir Bellare,et al.  A Forward-Secure Digital Signature Scheme , 1999, CRYPTO.

[23]  Miguel Castro,et al.  A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm , 1999 .

[24]  Yevgeniy Dodis,et al.  ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption , 2004, CCS '04.

[25]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[26]  Adi Shamir,et al.  Identity-Based Cryptosystems and Signature Schemes , 1984, CRYPTO.

[27]  Hugo Krawczyk,et al.  Robust Threshold DSS Signatures , 1996, Inf. Comput..

[28]  Moni Naor,et al.  Magic Functions: In Memoriam: Bernard M. Dwork 1923--1998 , 2003, JACM.

[29]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[30]  Hugo Krawczyk,et al.  Proactive Secret Sharing Or: How to Cope With Perpetual Leakage , 1995, CRYPTO.

[31]  Dan Boneh,et al.  Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles , 2006, CT-RSA.

[32]  Torben P. Pedersen Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing , 1991, CRYPTO.

[33]  Kathryn Chen,et al.  Authentication in a reconfigurable Byzantine fault tolerant system , 2004 .

[34]  Victor Shoup,et al.  Random Oracles in Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptography , 2000, Journal of Cryptology.

[35]  Tal Rabin,et al.  Verifiable secret sharing and multiparty protocols with honest majority , 1989, STOC '89.

[36]  Rafail Ostrovsky,et al.  How To Withstand Mobile Virus Attacks , 1991, PODC 1991.

[37]  Susan K. Langford Threshold DSS Signatures without a Trusted Party , 1995, CRYPTO.

[38]  Paul Feldman,et al.  A practical scheme for non-interactive verifiable secret sharing , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[39]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Extended Abstract) , 1988, STOC.

[40]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1985, JACM.

[41]  Sushil Jajodia,et al.  Redistributing Secret Shares to New Access Structures and Its Applications , 1997 .

[42]  Anna Lysyanskaya,et al.  Asynchronous verifiable secret sharing and proactive cryptosystems , 2002, CCS '02.

[43]  Stanisław Jarecki,et al.  Proactive secret sharing and public key cryptosystems , 1995 .

[44]  Ran Canetti,et al.  An Efficient Threshold Public Key Cryptosystem Secure Against Adaptive Chosen Ciphertext Attack , 1999, EUROCRYPT.