Sidorenkite (Na3MnPO4CO3), a New Intercalation Cathode Material for Na-Ion Batteries

Na-ion batteries represent an effective energy storage technology with slightly lower energy and power densities but potentially lower material costs than Li-ion batteries. Here, we report a new polyanionic intercalation cathode material of an unusual chemical class: sidorenkite (Na3MnPO4CO3). This carbonophosphate compound shows a high discharge capacity (∼125 mAh/g) and specific energy (374 Wh/kg). In situ X-ray diffraction measurement suggests that sidorenkite undergoes a solid solution type reversible topotactic structural evolution upon electrochemical cycling. Ex situ solid state NMR investigation reveals that more than one Na per formula unit can be deintercalated from the structure, indicating a rarely observed two-electron intercalation reaction in which both Mn2+/Mn3+ and Mn3+/Mn4+ redox couples are electrochemically active.

[1]  Gerbrand Ceder,et al.  Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. , 2012, Journal of the American Chemical Society.

[2]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[3]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[4]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[5]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[6]  Anubhav Jain,et al.  Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally , 2012 .

[7]  C. Grey,et al.  Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates. , 2010, Journal of the American Chemical Society.

[8]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[9]  F. Taulelle,et al.  A quantitative study of 27Al MAS NMR in crystalline YAG , 1990 .

[10]  J. Cabana,et al.  Cation ordering in Li[NixMnxCo(1-2x)] O2-layered cathode materials: A nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study , 2007 .

[11]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[12]  Shinji Inazawa,et al.  Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide , 2012 .

[13]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[14]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[15]  Gang Wu,et al.  Solid-State 23Na Nuclear Magnetic Resonance of Sodium Complexes with Crown Ethers, Cryptands, and Naturally Occurring Antibiotic Ionophores: A Direct Probe to the Sodium-Binding Sites , 2000 .

[16]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[17]  C. Grey,et al.  Molten Salt Synthesis and High Rate Performance of the “Desert‐Rose” form of LiCoO2 , 2008 .

[18]  Khiem Trad,et al.  NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries , 2010 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  Mark E. Smith,et al.  MULTIPLE QUANTUM MAGIC ANGLE SPINNING NMR DETECTION OF IMPURITY PHASES IN NA2HFO3 , 1996 .

[21]  Young Joo Lee,et al.  Lithium MAS NMR studies of cathode materials for lithium-ion batteries , 2003 .

[22]  C. Delmas,et al.  Sodium ion mobility in Na(x)CoO2 (0.6 < x < 0.75) cobaltites studied by 23Na MAS NMR. , 2009, Inorganic chemistry.

[23]  Patrick B. Smith,et al.  Magic-angle spinning sodium-23 nuclear magnetic resonance studies of crystalline sodides , 1984 .

[24]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[25]  A. Khomyakov Sidorenkite, Na3Mn (PO4) (CO3), a new mineral , 1980 .

[26]  Gerbrand Ceder,et al.  THE LI INTERCALATION POTENTIAL OF LIMPO4 AND LIMSIO4 OLIVINES WITH M = FE, MN, CO, NI , 2004 .

[27]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[28]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[29]  Jacco D. van Beek,et al.  matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab® , 2007 .

[30]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[31]  John J. Rehr,et al.  Theoretical X-ray Absorption Fine Structure Standards , 1991 .

[32]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[33]  J-M Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[34]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[35]  Min Gyu Kim,et al.  In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material , 2010 .

[36]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[37]  C. Delmas,et al.  A Layered Iron(III) Phosphate Phase, Na3Fe3(PO4)4: Synthesis, Structure, and Electrochemical Properties as Positive Electrode in Sodium Batteries , 2010 .

[38]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[39]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[40]  Ying Shirley Meng,et al.  Electrochemical and Structural Study of the Layered, “Li-Excess” Lithium-Ion Battery Electrode Material Li[Li1/9Ni1/3Mn5/9]O2 , 2009 .

[41]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[42]  A. Kentgens,et al.  23Na NMR Spectroscopy of Solids: Interpretation of Quadrupole Interaction Parameters and Chemical Shifts , 1994 .

[43]  Y. Meng,et al.  Electronic spin transition in nanosize stoichiometric lithium cobalt oxide. , 2012, Journal of the American Chemical Society.

[44]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[45]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[46]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[47]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[48]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[49]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[50]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[51]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic Chemistry.

[52]  Young Joo Lee,et al.  Covalency Measurements via NMR in Lithium Metal Phosphates , 2007 .