Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions

Interaction computing is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are to (i) identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this and (ii) use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in systems biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, the Krebs cycle and p53–mdm2 genetic regulation constructed from systems biology models have canonically associated algebraic structures (their transformation semigroups). These contain permutation groups (local substructures exhibiting symmetry) that correspond to ‘pools of reversibility’. These natural subsystems are related to one another in a hierarchical manner by the notion of ‘weak control’. We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-Abelian groups are found in biological examples and can be harnessed to realize finitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions.

[1]  Marc Deléglise,et al.  Short Polynomial Representations for Square Roots Modulo p , 2003, Des. Codes Cryptogr..

[2]  G. Horváth,et al.  Functions and Polynomials over Finite Groups from the Computational Perspective , 2008 .

[3]  David M. Clark,et al.  Genetic programming for finite algebras , 2008, GECCO '08.

[4]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[5]  C. Petri Kommunikation mit Automaten , 1962 .

[6]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[7]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[8]  Yu-Lee Paul,et al.  Changes in Cis-regulatory Elements during Morphological Evolution , 2012, Biology.

[9]  J. Tyson Modeling the cell division cycle: cdc2 and cyclin interactions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Wolfgang Marwan,et al.  Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation. , 2005, Journal of theoretical biology.

[11]  Chrystopher L. Nehaniv,et al.  Automatic analysis of computation in biochemical reactions , 2008, Biosyst..

[12]  M. Lässig,et al.  On the evolution of gene regulation , 2003 .

[13]  Aurélien Naldi,et al.  Logical modelling of regulatory networks with GINsim 2.3 , 2009, Biosyst..

[14]  Wolfgang Reisig,et al.  Petri Nets , 1985, EATCS Monographs on Theoretical Computer Science.

[15]  Chrystopher L. Nehaniv,et al.  An assertion concerning functionally complete algebras and NP-completeness , 2008, Theor. Comput. Sci..

[16]  Jean Sirmai,et al.  Autopoiesis Facilitates Self-Reproduction , 2013, ECAL.

[17]  Georgi Georgiev,et al.  Self-organization in non-equilibrium systems , 2015 .

[18]  John Rhodes,et al.  Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology , 2009 .

[19]  Peter Dittrich,et al.  Chemical Computing , 2004, UPP.

[20]  Chrystopher L. Nehaniv,et al.  Algebraic properties of automata associated to Petri nets and applications to computation in biological systems , 2008, Biosyst..

[21]  Denis Thieffry,et al.  Petri net modelling of biological regulatory networks , 2008, J. Discrete Algorithms.

[22]  Tobias Nipkow,et al.  Unification in primal algebras, their powers and their varieties , 1990, JACM.

[23]  Artiom Alhazov,et al.  Membrane Computing , 2013, Lecture Notes in Computer Science.

[24]  Hideaki Suzuki,et al.  Artificial Chemistry , 2009, Artificial Life.

[25]  John L. Rhodes,et al.  Realizing Complex Boolean Functions with Simple Groups , 1966, Inf. Control..

[26]  Christopher Landauer,et al.  Theoretical Biology: Organisms and Mechanisms , 2002 .

[27]  Chrystopher L. Nehaniv,et al.  The Right Stuff: Appropriate Mathematics for Evolutionary and Developmental Biology (Editors' Introduction to the Special Issue) , 2000, Artificial Life.

[28]  M. Ptashne,et al.  Genes and Signals , 2001 .

[29]  Peter Dittrich,et al.  Chemical Organisation Theory , 2007, Bulletin of mathematical biology.

[30]  Chrystopher L. Nehaniv,et al.  On Straight Words and Minimal Permutators in Finite Transformation Semigroups , 2010, CIAA.

[31]  G. Horváth,et al.  Equivalence and equation solvability problems for the alternating group A4 , 2012 .

[32]  D. Norman,et al.  A representational analysis of numeration systems , 1995, Cognition.

[33]  G. Lallement Semigroups and combinatorial applications , 1979 .

[34]  Chrystopher L. Nehaniv,et al.  The Evolution and Understanding of Hierarchical Complexity in Biology from an Algebraic Perspective , 1999, Artificial Life.

[35]  Chrystopher L. Nehaniv,et al.  SgpDec: Cascade (De)Compositions of Finite Transformation Semigroups and Permutation Groups , 2014, ICMS.

[36]  F. C. Santos,et al.  Evolutionary games in self-organizing populations , 2008 .

[37]  Chrystopher L. Nehaniv,et al.  WP 1 : Cell Biology , Autopoiesis and Biological Design Patterns D 1 . 4 : Mathematical Models of Gene Expression Computing , 2022 .

[38]  G. Galli,et al.  Theory of alkyl-terminated silicon quantum dots. , 2005, The journal of physical chemistry. B.

[39]  R. Rosen THE REPRESENTATION OF BIOLOGICAL SYSTEMS FROM THE STANDPOINT OF THE THEORY OF CATEGORIES , 1958 .

[40]  Chrystopher L. Nehaniv,et al.  Length of polynomials over finite groups , 2015, J. Comput. Syst. Sci..

[41]  Eric H Davidson,et al.  New computational approaches for analysis of cis-regulatory networks. , 2002, Developmental biology.

[42]  Thilo Gross,et al.  Adaptive Networks: Theory, Models and Applications , 2009 .

[43]  M. Ptashne A genetic switch : phage λ and higher organisms , 1992 .

[44]  Luca Cardelli,et al.  Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus , 2007, CMSB.

[45]  Chrystopher L. Nehaniv,et al.  Algebraic Hierarchical Decomposition of Finite State Automata: Comparison of Implementations for Krohn-Rhodes Theory , 2004, CIAA.

[46]  A. Clifford,et al.  The algebraic theory of semigroups , 1964 .

[47]  Cristian S. Calude,et al.  Computing with Cells and Atoms: An Introduction to Quantum, DNA and Membrane Computing , 2000 .

[48]  John E. Johnson,et al.  Templated self-assembly of quantum dots from aqueous solution using protein scaffolds , 2006 .

[49]  S. Scott,et al.  The arithmetic of polynomial maps over a group and the structure of certain permutational polynomial groups. I , 1969 .

[50]  Denis Thieffry,et al.  Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc , 2008, ECCB.

[51]  Yuval Ne'eman,et al.  The Eightfold Way , 1965 .

[52]  Ferenc Gécseg,et al.  Products of Automata , 1986, EATCS Monographs in Theoretical Computer Science.

[53]  H. Jones,et al.  Groups, representations, and physics , 1990 .

[54]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[55]  Pietro Speroni di Fenizio,et al.  Chemical Organisation Theory , 2005, Bulletin of mathematical biology.

[56]  W. Holcombe Algebraic automata theory: Contents , 1982 .

[57]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[58]  Takashi Ikegami,et al.  Evolvability of machines and tapes , 1999, Artificial Life and Robotics.

[59]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[60]  A. R. D. Mathias,et al.  NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .

[61]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[62]  Hiroki Sayama,et al.  Generative Network Automata: A Generalized Framework for Modeling Complex Dynamical Systems with Autonomously Varying Topologies , 2007, 2007 IEEE Symposium on Artificial Life.

[63]  M. Born Statistical Thermodynamics , 1944, Nature.

[64]  Cory Y. McLean,et al.  Human-specific loss of regulatory DNA and the evolution of human-specific traits , 2011, Nature.

[65]  J. Howie Fundamentals of semigroup theory , 1995 .

[66]  Aurélien Naldi,et al.  Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle , 2006, ISMB.

[67]  A. Fröhlich The Near-Ring Generated by the Inner Automorphisms of a Finite Simple Group , 1958 .

[68]  J. Rhodes,et al.  Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines , 1965 .

[69]  Christoph Kaleta,et al.  Computing chemical organizations in biological networks , 2008, Bioinform..

[70]  D. Thieffry,et al.  Modular logical modelling of the budding yeast cell cycle. , 2009, Molecular bioSystems.

[71]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[72]  Joseph A. Goguen,et al.  Realization is universal , 1972, Mathematical systems theory.

[73]  Chrystopher L. Nehaniv,et al.  Hierarchical Coordinate Systems for Understanding Complexity and its Evolution, with Applications to Genetic Regulatory Networks , 2008, Artificial Life.

[74]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[75]  Ian Sanders,et al.  Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway , 2010, OPAALS.

[76]  W. D. Maurer,et al.  A property of finite simple non-abelian groups , 1965 .

[77]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[78]  H. Paul Zeiger,et al.  Cascade synthesis of finite-state machines , 1965, SWCT.

[79]  Ietro,et al.  Chemical Organization Theory as a Theoretical Base for Chemical Computing , 2005 .

[80]  Pál Dömösi,et al.  ALGEBRAIC THEORY OF FINITE AUTOMATA NETWORKS , 1998 .

[81]  H. P. Zeige,et al.  Cascade Synthesis of Finite-State Machines , 2004 .

[82]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[83]  Steffen Klamt,et al.  SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools , 2013, BMC Systems Biology.

[84]  Hiroki Sayama,et al.  Generative Network Automata: A Generalized Framework for Modeling Adaptive Network Dynamics Using Graph Rewritings , 2009, 0901.0216.

[85]  Michael A. Arbib,et al.  Algebraic theory of machines, languages and semigroups , 1969 .

[86]  S. Bergmann,et al.  The evolution of gene expression levels in mammalian organs , 2011, Nature.

[87]  Benjamin Steinberg,et al.  The q-theory of Finite Semigroups , 2008 .

[88]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[89]  Chrystopher L. Nehaniv,et al.  Transformation Semigroups as Constructive Dynamical Spaces , 2010, OPAALS.

[90]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[91]  M. Kastan,et al.  Control of G1 arrest after DNA damage. , 1993, Environmental health perspectives.

[92]  Andrés Iglesias,et al.  Mathematical Software - ICMS 2006, Second International Congress on Mathematical Software, Castro Urdiales, Spain, September 1-3, 2006, Proceedings , 2006, ICMS.

[93]  H. Maturana,et al.  Autopoiesis: the organization of living systems, its characterization and a model. , 1974, Currents in modern biology.

[94]  Luca Cardelli,et al.  A Graphical Representation for Biological Processes in the Stochastic pi-Calculus , 2006, Trans. Comp. Sys. Biology.

[95]  N. Backhouse,et al.  The representation theory of the icosahedral group , 1974 .

[96]  Csaba A. Szabó,et al.  The extended equivalence and equation solvability problems for groups , 2011, Discret. Math. Theor. Comput. Sci..

[97]  R. Carbó-Dorca,et al.  Icosahedral symmetry structures with open-shell electronic configuration hN (N=1–9). , 2000 .

[98]  Robert Rosen,et al.  A relational theory of biological systems II , 1958 .

[99]  Gian-Carlo Rota,et al.  The real numbers as a wreath product , 1975 .

[100]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .