Syntheses and properties of graphyne fragments: trigonally expanded dehydrobenzo[12]annulenes.

We present herein the synthesis and properties of the largest hitherto unknown graphyne fragment, namely trigonally expanded tetrakis(dehydrobenzo[12]annulene)s (tetrakis-DBAs). Intramolecular three-fold alkyne metathesis reactions of hexakis(arylethynyl)DBAs 9 a and 9 b using Fürstner's Mo catalyst furnished tetrakis-DBAs 8 a and 8 b substituted with tert-butyl or branched alkyl ester groups in moderate and fair yields, respectively, demonstrating that the metathesis reaction of this protocol is a powerful tool for the construction of graphyne fragment backbones. For comparison, hexakis(arylethynyl)DBAs 9 c-g have also been prepared. The one-photon absorption spectrum of tetrakis-DBA 8 a bearing tert-butyl groups revealed a remarkable bathochromic shift of the absorption cut-off (λcutoff ) compared with those of previously reported graphyne fragments due to extended π-conjugation. Moreover, in the two-photon absorption spectrum, 8 a showed a large cross-section for a pure hydrocarbon because of the planar para-phenylene-ethynylene conjugation pathways. Hexakis(arylethynyl)-DBAs 9 c-e and 9 g and tetrakis-DBA 8 b bearing electron-withdrawing groups aggregated in chloroform solutions. Comparison between the free energies of 9 e and 8 b bearing the same substituents revealed the more favorable association of the latter due to stronger π-π interactions between the extended π-cores. Polarized optical microscopy observations, DSC, and XRD measurements showed that 8 b and 9 e with branched alkyl ester groups displayed columnar rectangular mesophases. By the time-resolved microwave conductivity method, the columnar rectangular phase of 8 b was shown to exhibit a moderate charge-carrier mobility of 0.12 cm(2)  V(-1)  s(-1) . These results indicate that large graphyne fragments can serve as good organic semiconductors.

[1]  K. Srinivasu,et al.  Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications , 2012 .

[2]  Jeffrey S. Moore,et al.  Alkyne Metathesis: Catalysts and Synthetic Applications , 2007 .

[3]  Y. Tobe,et al.  Donors and acceptors based on triangular dehydrobenzo[12]annulenes: formation of a triple-layered rosette structure by a charge-transfer complex. , 2008, Journal of the American Chemical Society.

[4]  Y. Tobe,et al.  Theoretical studies on graphyne substructures: geometry, aromaticity, and electronic properties of the multiply fused dehydrobenzo[12]annulenes. , 2007, The Journal of organic chemistry.

[5]  G. Wegner,et al.  SYNTHESIS OF TRIPHENYLENE-BASED PORPHYRAZINATO METAL(II) COMPLEXES WHICH DISPLAY DISCOTIC COLUMNAR MESOMORPHISM , 1995 .

[6]  N. Tohnai,et al.  Construction of 1D π-stacked superstructures with inclusion channels through symmetry-decreasing crystallization of discotic molecules of C3 symmetry. , 2011, Chemistry.

[7]  Ashok S. Shetty,et al.  Aromatic π-Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles , 1996 .

[8]  H. A. Staab,et al.  Zur konjugation in makrocyclischen bindungssystemen IV: synthese und eigenschaften von 1:2, 5:6, 9:10-tribenzo-cyclododeka-1. 5. 9-trien-3. 7. 11-triin☆ , 1966 .

[9]  Alois Fürstner Alkinmetathese im Aufwind , 2013 .

[10]  Jeffrey S. Moore,et al.  Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. , 2006, Angewandte Chemie.

[11]  Yidong Xia,et al.  Remarkable Hydrogen Storage Capacity In Li-Decorated Graphyne: Theoretical Predication , 2012 .

[12]  K. Müllen,et al.  From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. , 2012, Angewandte Chemie.

[13]  E. Wachtel,et al.  Columnar mesophases of octa-alkyloxydibenzopyrenes and their charge transfer complexes: Synthesis, X-ray and NMR , 1996 .

[14]  Jami English,et al.  Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures , 2000, Organic letters.

[15]  S. Tagawa,et al.  Photogeneration of charge carriers and their transport properties in poly[bis(p-n-butylphenyl)silane]. , 2005, The journal of physical chemistry. B.

[16]  A. Bard,et al.  Room temperature discotic liquid crystalline thin films of hexa-peri-hexabenzocoronene: Synthesis and optoelectronic properties , 2003 .

[17]  K. Müllen,et al.  Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents. , 2004, Journal of the American Chemical Society.

[18]  Graphyne: Hexagonal network of carbon with versatile Dirac cones , 2011, 1112.2932.

[19]  S. Yamada,et al.  Two-photon absorption properties of Dehydrobenzo[12]annulenes and hexakis(phenylethynyl)benzenes: effect of edge-linkage. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  S. Tagawa,et al.  Anisotropic electron transport properties in sumanene crystal. , 2009, Journal of the American Chemical Society.

[21]  M. Haley,et al.  Synthetic Strategies for Dehydrobenzo[n]annulenes , 2003 .

[22]  John E Anthony,et al.  The larger acenes: versatile organic semiconductors. , 2008, Angewandte Chemie.

[23]  Klaus Müllen,et al.  Superphenalene-based columnar liquid crystals. , 2004, Angewandte Chemie.

[24]  Sandeep Kumar,et al.  Self-organization of disc-like molecules: chemical aspects. , 2006, Chemical Society reviews.

[25]  D. S. S. Rao,et al.  Novel dibenzo[fg,op]naphthacene discotic liquid crystals: a versatile rational synthesis , 2002 .

[26]  M. Haley,et al.  Synthesis of expanded graphdiyne substructures , 2000, Chemistry.

[27]  M. Iyoda,et al.  Copper-Mediated Simple and Efficient Synthesis of Tribenzohexadehydro[12]annulene and Its Derivatives , 2004 .

[28]  S. De,et al.  Mechanical properties of graphyne monolayers: a first-principles study. , 2012, Physical chemistry chemical physics : PCCP.

[29]  Kyle N. Plunkett,et al.  A highly active, heterogeneous catalyst for alkyne metathesis. , 2006, Angewandte Chemie.

[30]  K. Ohkubo,et al.  Electronic properties of trifluoromethylated corannulenes. , 2012, Angewandte Chemie.

[31]  Nan Chen,et al.  Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission , 2011 .

[32]  Fengmin Wu,et al.  Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet , 2011 .

[33]  U. Bunz,et al.  Structural Characterization of a Cyclohexamericmeta-Phenyleneethynylene Made by Alkyne Metathesis with In Situ Catalysts , 2000 .

[34]  Frank Giesselmann,et al.  Diskotische Flssigkristalle: Von der mageschneiderten Synthese zur Kunststoffelektronik , 2007 .

[35]  M. Iyoda,et al.  Synthesis of tris(tetrathiafulvaleno)dodecadehydro- [18]annulenes and their self-assembly. , 2006, Organic letters.

[36]  Shugo Suzuki,et al.  Electronic structure of three-dimensional graphyne , 2000 .

[37]  P. Schuhmacher,et al.  Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal , 1994, Nature.

[38]  K. Kamada,et al.  Convenient Synthesis and Photophysical Properties of Tetrabenzopentakisdehydro[12]annuleno[12]annulene , 2004 .

[39]  Jeffrey S. Moore,et al.  Arylene ethynylene macrocycles prepared by precipitation-driven alkyne metathesis. , 2004, Journal of the American Chemical Society.

[40]  Klaus Müllen,et al.  Die chemische Synthese von Nanographen, Graphen‐Nanobändern und Graphen‐Schichten , 2012 .

[41]  A. Hirsch The era of carbon allotropes. , 2010, Nature materials.

[42]  Francesc Viñes,et al.  Competition for graphene: graphynes with direction-dependent Dirac cones. , 2012, Physical review letters.

[43]  S. Seki,et al.  Optoelectronic Properties and Nanostructure Formation of σ-Conjugated Polymers , 2007 .

[44]  S. Sankararaman,et al.  Synthesis and spectroscopic investigation of aggregation through cooperative pi-pi and C-H...O interactions in a novel pyrene octaaldehyde derivative. , 2006, Organic letters.

[45]  S. De Feyter,et al.  Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der Waals interaction. , 2010, Chemical communications.

[46]  Jeffrey S. Moore,et al.  Arylene–ethynylene macrocycles: Privileged shape-persistent building blocks for organic materials , 2012 .

[47]  P. Zandstra,et al.  MCD AND ABSORPTION-SPECTRA OF TRIBENZO[12]ANNULENE , 1977 .

[48]  Shugo Suzuki,et al.  Optimized geometries and electronic structures of graphyne and its family , 1998 .

[49]  A. Fürstner,et al.  Molybdenum nitride complexes with Ph3SiO ligands are exceedingly practical and tolerant precatalysts for alkyne metathesis and efficient nitrogen transfer agents. , 2009, Journal of the American Chemical Society.

[50]  B. Schmidt,et al.  Elektronische Eigenschaften trifluormethylierter Corannulene , 2012 .

[51]  Daoben Zhu,et al.  Architecture of graphdiyne nanoscale films. , 2010, Chemical communications.

[52]  K. Müllen,et al.  Charge recombination via intercolumnar electron tunneling through the lipid-like mantle of discotic hexa-alkyl-hexa-peri-hexabenzocoronenes. , 2005, Journal of the American Chemical Society.

[53]  M. Iyoda,et al.  Konjugierte Makrocyclen: Konzepte und Anwendungen , 2011 .

[54]  J. Warman,et al.  CHARGE CARRIER DYNAMICS IN MESOMORPHIC HEXAKIS(PENTYLOXY)TRIPHENYLENE , 1995 .

[55]  Andrew C. Grimsdale,et al.  Die Chemie organischer Nanomaterialien , 2005 .

[56]  Y. Tobe,et al.  Synthesis and properties of trefoil-shaped tris(hexadehydrotribenzo[12]annulene) and tris(tetradehydrotribenzo[12]annulene). , 2006, Organic letters.

[57]  J. Warman,et al.  The Core‐Size Effect on the Mobility of Charge in Discotic Liquid Crystalline Materials , 2001 .

[58]  Lin-wang Wang,et al.  High Capacity Hydrogen Storage in Ca Decorated Graphyne: A First-Principles Study , 2011 .

[59]  Graphyne- and Graphdiyne-based Nanoribbons: Density Functional Theory Calculations of Electronic Structures , 2011, 1211.4310.

[60]  S. Laschat,et al.  Discotic liquid crystals: from tailor-made synthesis to plastic electronics. , 2007, Angewandte Chemie.

[61]  A. Fürstner,et al.  Practical new silyloxy-based alkyne metathesis catalysts with optimized activity and selectivity profiles. , 2010, Journal of the American Chemical Society.

[62]  T. Aida,et al.  Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. , 2012, Accounts of chemical research.

[63]  U. Bunz,et al.  Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications. , 2000, Chemical reviews.

[64]  C. Tessier,et al.  ortho-Arene Cyclynes, Related Heterocyclynes, and Their Metal Chemistry. , 1999, Chemical reviews.

[65]  Shengyu Feng,et al.  Electronic spectra and third-order nonlinear properties of new structures in carbon family , 2002 .

[66]  S. Tagawa,et al.  Hole Conduction along Molecular Wires: σ‐Bonded Silicon Versus π‐Bond‐Conjugated Carbon , 2002 .

[67]  M. Kotani,et al.  Ionization of molecular excitons detected by electron emission: coronene and α-perylene , 1998 .

[68]  Y. Tobe,et al.  Syntheses and Photophysical Properties of Boomerang-shaped Bis(dehydrobenzo[12]annulene) and Trapezoid-shaped Tris(dehydrobenzo[12]annulene) , 2007 .

[69]  Charles A. Johnson,et al.  Carbon networks based on benzocyclynes. 6. synthesis of graphyne substructures via directed alkyne metathesis. , 2007, Organic letters.

[70]  G. Tew,et al.  Self-assembled vesicles from an amphiphilic ortho-phenylene ethynylene macrocycle. , 2006, Angewandte Chemie.

[71]  Jeffrey S. Moore,et al.  Engineering solid-state morphologies in carbazole-ethynylene macrocycles. , 2011, Journal of the American Chemical Society.

[72]  Michael M Haley,et al.  Renaissance of annulene chemistry. , 2006, Chemical reviews.

[73]  Klaus Müllen,et al.  The chemistry of organic nanomaterials. , 2005, Angewandte Chemie.

[74]  C. Tessier,et al.  Synthesis of Tris(2,5-dialkynylthieno)cyclotriynes, Tris(4,5-dialkoxyphenyl)cyclotriynes, and Tetrakis(4,5-dialkoxyphenyl)cyclotetraynes with Long-Chain Alkyl Substituents, and the Nickel and Cobalt Complexes of Tris[4,5-(didodecyloxy)phenyl]cyclotriyne , 1999 .

[75]  Y. Geerts,et al.  Transition temperature engineering of octaalkoxycarbonyl phthalocyanines , 2007 .

[76]  K. Praefcke,et al.  Hexaalkynyltriphenylene: A New Type of Nematic-Discotic Hydrocarbon† , 1990 .

[77]  Wojciech Pisula,et al.  Graphenes as potential material for electronics. , 2007, Chemical reviews.

[78]  M. Iyoda,et al.  Conjugated macrocycles: concepts and applications. , 2011, Angewandte Chemie.

[79]  R. B. Martin,et al.  Comparisons of Indefinite Self-Association Models. , 1996, Chemical reviews.

[80]  Christopher D. Simpson,et al.  Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons. , 2002, Journal of the American Chemical Society.

[81]  Sandeep Kumar,et al.  Recent developments in the chemistry of triphenylene-based discotic liquid crystals , 2004 .

[82]  Sandeep Kumar,et al.  A Room‐Temperature Discotic Nematic Liquid Crystal , 2000 .

[83]  Ray H. Baughman,et al.  Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms , 1987 .

[84]  M. Haley,et al.  Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "star" and "trefoil" graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. , 2001, The Journal of organic chemistry.

[85]  Kiley,et al.  Carbon Networks Based on Dehydrobenzoannulenes: Synthesis of Graphdiyne Substructures , 1997 .

[86]  S. Tagawa,et al.  Superstructure-dependent optical and electrical properties of an unusual face-to-face, pi-stacked, one-dimensional assembly of dehydrobenzo[12]annulene in the crystalline state. , 2008, Chemistry.

[87]  F. D. De Schryver,et al.  Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. , 2006, Journal of the American Chemical Society.

[88]  H. Nakajima,et al.  Electronic and optical properties in the solid-state molecular assemblies of anion-responsive pyrrole-based π-conjugated systems. , 2010, Chemistry.

[89]  A. Saeki,et al.  Unprecedented High Local Charge-carrier Mobility in P3HT Revealed by Direct and Alternating Current Methods , 2013 .

[90]  Michael M Haley,et al.  Structure-property relationships of donor/acceptor-functionalized tetrakis(phenylethynyl)benzenes and bis(dehydrobenzoannuleno)benzenes. , 2005, Journal of the American Chemical Society.

[91]  K. Müllen,et al.  Controlled self-assembly of C3-symmetric hexa-peri-hexabenzocoronenes with alternating hydrophilic and hydrophobic substituents in solution, in the bulk, and on a surface. , 2009, Journal of the American Chemical Society.

[92]  John E. Anthony Höhere Acene: vielseitige organische Halbleiter , 2008 .

[93]  G. Tew,et al.  Liquid crystalline order from ortho-phenylene ethynylene macrocycles. , 2006, Journal of the American Chemical Society.

[94]  John M. Warman,et al.  Record Charge Carrier Mobility in a Room‐Temperature Discotic Liquid‐Crystalline Derivative of Hexabenzocoronene , 1999 .

[95]  Klaus Müllen,et al.  Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. , 2008, Accounts of chemical research.

[96]  Christopher J. Bardeen,et al.  Variable Electronic Coupling in Phenylacetylene Dendrimers: The Role of Förster, Dexter, and Charge-Transfer Interactions , 2004 .

[97]  Chien Ming Wang,et al.  A molecular dynamics investigation on thermal conductivity of graphynes , 2012 .

[98]  Michael M. Haley,et al.  Auf Dehydrobenzoannulenen basierende Kohlenstoffnetzwerke: Synthese von Graphdiinsubstrukturen† , 1997 .

[99]  Steven W. Cranford,et al.  Extended graphynes: simple scaling laws for stiffness, strength and fracture. , 2012, Nanoscale.

[100]  Jeffrey S. Moore,et al.  Formtreue Makrocyclen: Strukturen und Synthesen aus Arylen‐ und Ethinylen‐Bausteinen , 2006 .

[101]  Wojciech Pisula,et al.  Influence of alkyl substituents on the solution- and surface-organization of hexa-peri-hexabenzocoronenes. , 2005, Journal of the American Chemical Society.

[102]  Bernd Kohne,et al.  Hexaalkinyltriphenylen als neuer Typ nematisch‐discotischer Kohlenwasserstoffe , 1990 .

[103]  T. Goodson,et al.  Building symmetric two-dimensional two-photon materials. , 2006, Journal of the American Chemical Society.

[104]  Todd J Martínez,et al.  Meta-conjugation and excited-state coupling in phenylacetylene dendrimers. , 2003, Journal of the American Chemical Society.

[105]  S. K. Prasad,et al.  Novel heptasubstituted triphenylene discotic liquid crystals , 2000 .

[106]  Klaus Müllen,et al.  Columnare Flüssigkristalle auf Superphenalen‐Basis , 2004 .

[107]  François Diederich,et al.  All‐Carbon Scaffolds by Rational Design , 2010, Advanced materials.

[108]  Koji Ohta,et al.  Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation , 2003 .

[109]  A. Fürstner Alkyne metathesis on the rise. , 2013, Angewandte Chemie.

[110]  J. Melinger,et al.  Optical and photophysical properties of light-harvesting phenylacetylene monodendrons based on unsymmetrical branching. , 2002, Journal of the American Chemical Society.

[111]  Keiji Hirose,et al.  m-Diethynylbenzene macrocycles: syntheses and self-association behavior in solution. , 2002, Journal of the American Chemical Society.

[112]  Jeffrey S. Moore,et al.  A Mo(VI) alkylidyne complex with polyhedral oligomeric silsesquioxane ligands: homogeneous analogue of a silica-supported alkyne metathesis catalyst. , 2006, Journal of the American Chemical Society.

[113]  Y. Yamaguchi,et al.  Rigid molecular architectures that comprise a 1,3,5-trisubstituted benzene core and three oligoaryleneethynylene arms: light-emitting characteristics and pi conjugation between the arms. , 2006, Journal of the American Chemical Society.

[114]  Shugo Suzuki,et al.  Potassium intercalated graphyne , 2001 .

[115]  M. Haley,et al.  Carbon networks based on dehydrobenzoannulenes. 5. Extension of two-dimensional conjugation in graphdiyne nanoarchitectures. , 2005, The Journal of organic chemistry.

[116]  F. Diederich,et al.  Synthesis and characteristics of a nonaggregating tris(tetrathiafulvaleno)dodecadehydro[18]annulene. , 2006, Chemistry.

[117]  John M. Warman,et al.  The mobility of charge carriers in all four phases of the columnar discotic material hexakis(hexylthio)triphenylene: Combined TOF and PR‐TRMC results , 1996 .