Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires.

In ballistic thermal conduction, the wave characteristics of phonons allow the transmission of energy without dissipation. However, the observation of ballistic heat transport at room temperature is challenging because of the short phonon mean free path. Here we show that ballistic thermal conduction persisting over 8.3 µm can be observed in SiGe nanowires with low thermal conductivity for a wide range of structural variations and alloy concentrations. We find that an unexpectedly low percentage (∼0.04%) of phonons carry out the heat conduction process in SiGe nanowires, and that the ballistic phonons display properties including non-additive thermal resistances in series, unconventional contact thermal resistance, and unusual robustness against external perturbations. These results, obtained in a model semiconductor, could enable wave-engineering of phonons and help to realize heat waveguides, terahertz phononic crystals and quantum phononic/thermoelectric devices ready to be integrated into existing silicon-based electronics.

[1]  A. Majumdar,et al.  Enhanced Thermoelectric Performance of Rough Silicon Nanowires. , 2008 .

[2]  G. Luo,et al.  Thermal conductivity of Si/SiGe superlattice films , 2008 .

[3]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[4]  C. N. Lau,et al.  Ballistic phonon thermal transport in multiwalled carbon nanotubes. , 2005, Physical review letters.

[5]  Arun Majumdar,et al.  Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.

[6]  Ravi Prasher,et al.  Predicting the thermal resistance of nanosized constrictions. , 2005, Nano letters.

[7]  M. Dresselhaus,et al.  Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. , 2009, Physical review letters.

[8]  Fabian Duerr,et al.  Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene , 2009, Nature.

[9]  Choongho Yu,et al.  Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. , 2012, Nano letters.

[10]  Philip Kim,et al.  Observation of the fractional quantum Hall effect in graphene , 2009, Nature.

[11]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[12]  F. D. Rosi,et al.  Thermal Conductivity and Thermoelectric Power of Germanium‐Silicon Alloys , 1958 .

[13]  M. Dresselhaus,et al.  Modeling study of thermoelectric SiGe nanocomposites , 2009 .

[14]  N. Mingo,et al.  Marked effects of alloying on the thermal conductivity of nanoporous materials. , 2010, Physical Review Letters.

[15]  J. Alvarez-Quintana,et al.  Thermal conductivity of thin single-crystalline germanium-on-insulator structures , 2011 .

[16]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[17]  Eun Kyung Lee,et al.  The influence of phonon scatterings on the thermal conductivity of SiGe nanowires , 2012 .

[18]  J. Xiang,et al.  Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime. , 2011, Nano letters.

[19]  H. R. Meddins,et al.  The thermal and thermoelectric properties of sintered germanium-silicon alloys , 1976 .

[20]  Moon-Ho Jo,et al.  Band-gap modulation in single-crystalline Si1-xGex nanowires. , 2006, Nano letters.

[21]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[22]  David G. Cahill,et al.  Frequency dependence of the thermal conductivity of semiconductor alloys , 2007 .

[23]  D. Poulikakos,et al.  Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. , 2011, Nano letters.

[24]  P. Eklund,et al.  Raman Scattering from Si1-xGex Alloy Nanowires , 2008 .

[25]  Moayyed A. Hussain,et al.  The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators , 1991 .

[26]  Si‐Chen Lee,et al.  The growth and radial analysis of Si/Ge core-shell nanowires , 2010 .

[27]  D. M. Rowe,et al.  Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys , 1981, Nature.

[28]  Charles G. Smith Low-dimensional quantum devices , 1996 .

[29]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.