Premature white matter aging in patients with right mesial temporal lobe epilepsy: A machine learning approach based on diffusion MRI data

Brain age prediction based on machine learning has been applied to various neurological diseases to discover its clinical values. By this innovative approach, it has been reported that the patients with refractory epilepsy had premature brain aging. Of refractory epilepsy, right and left subtypes of mesial temporal lobe epilepsy (MTLE) are the most common forms and exhibit distinct patterns in white matter alterations. So far, it is unclear whether these two subtypes of MTLE would have di ff erence in white matter aging due to distinct white matter alterations. To address this issue, a machine learning based brain age model using di ff usion MRI data was established to investigate biological age of white matter tracts. All di ff usion MRI datasets were obtained from the same 3-Tesla MRI scanner. To build the brain age prediction model, di ff usion MRI datasets of 300 healthy participants were processed to extract age-relevant di ff usion indices from 76 major white matter

[1]  Christian Gaser,et al.  Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained? , 2019, Front. Neurol..

[2]  Christian Wachinger,et al.  Gaussian process uncertainty in age estimation as a measure of brain abnormality , 2018, NeuroImage.

[3]  Christos Davatzikos,et al.  Evaluation of non-negative matrix factorization of grey matter in age prediction , 2018, NeuroImage.

[4]  J. Cole,et al.  Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers , 2017, Trends in Neurosciences.

[5]  Thomas Thesen,et al.  Structural brain changes in medically refractory focal epilepsy resemble premature brain aging , 2017, Epilepsy Research.

[6]  Stuart J. Ritchie,et al.  Brain age predicts mortality , 2017, Molecular Psychiatry.

[7]  R. Leak,et al.  Aging of cerebral white matter , 2017, Ageing Research Reviews.

[8]  Giovanni Montana,et al.  Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker , 2016, NeuroImage.

[9]  Peter Savadjiev,et al.  Inter-site and inter-scanner diffusion MRI data harmonization , 2016, NeuroImage.

[10]  P. Basser,et al.  Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure , 2016, NeuroImage.

[11]  Yu-Chun Lo,et al.  Automatic whole brain tract‐based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy , 2015, Human brain mapping.

[12]  Yu-Chun Lo,et al.  NTU‐DSI‐122: A diffusion spectrum imaging template with high anatomical matching to the ICBM‐152 space , 2015, Human brain mapping.

[13]  Robert Leech,et al.  Prediction of brain age suggests accelerated atrophy after traumatic brain injury , 2015, Annals of neurology.

[14]  D. Hu,et al.  Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy , 2015, NeuroImage: Clinical.

[15]  Rebecca J. Williams,et al.  Disentangling the cognitive components supporting Austin Maze performance in left versus right temporal lobe epilepsy , 2013, Epilepsy & Behavior.

[16]  Seokjun Hong,et al.  Imaging structural and functional brain networks in temporal lobe epilepsy , 2013, Front. Hum. Neurosci..

[17]  Leonardo Bonilha,et al.  Microstructural integrity of early‐ versus late‐myelinating white matter tracts in medial temporal lobe epilepsy , 2013, Epilepsia.

[18]  T. Benzinger,et al.  Diffusion tensor MRI as a biomarker in axonal and myelin damage. , 2013, Imaging in medicine.

[19]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[20]  Khader M. Hasan,et al.  Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: A machine learning approach , 2013, NeuroImage.

[21]  Stefan Klöppel,et al.  BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease , 2013, PloS one.

[22]  Christian Gaser,et al.  Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s Disease , 2012 .

[23]  Yung-Chin Hsu,et al.  A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets , 2012, NeuroImage.

[24]  Luis Concha,et al.  Mesial temporal sclerosis is linked with more widespread white matter changes in temporal lobe epilepsy☆ , 2012, NeuroImage: Clinical.

[25]  Rajesh Kumar,et al.  Regional brain axial and radial diffusivity changes during development , 2012, Journal of neuroscience research.

[26]  D. Glahn,et al.  Fractional anisotropy of water diffusion in cerebral white matter across the lifespan , 2012, Neurobiology of Aging.

[27]  P. Kwan,et al.  Drug-resistant epilepsy. , 2011, The New England journal of medicine.

[28]  C. Lebel,et al.  Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood , 2011, The Journal of Neuroscience.

[29]  Tadayoshi Fushiki,et al.  Estimation of prediction error by using K-fold cross-validation , 2011, Stat. Comput..

[30]  Karl J. Friston,et al.  Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation , 2011, NeuroImage.

[31]  Raj Sheth,et al.  Brain development in children with new onset epilepsy: A prospective controlled cohort investigation , 2010, Epilepsia.

[32]  A. Dale,et al.  Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. , 2010, Cerebral cortex.

[33]  Jacques P. Brown,et al.  Normative bone mineral density z-scores for Canadians aged 16 to 24 years: the Canadian Multicenter Osteoporosis Study. , 2010, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[34]  Christian Gaser,et al.  Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters , 2010, NeuroImage.

[35]  M. Brázdil,et al.  An optimized voxel‐based morphometric study of gray matter changes in patients with left‐sided and right‐sided mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE/HS) , 2010, Epilepsia.

[36]  J. H. Cross,et al.  Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 , 2010, Epilepsia.

[37]  B. Hermann,et al.  Children with new-onset epilepsy exhibit diffusion abnormalities in cerebral white matter in the absence of volumetric differences , 2010, Epilepsy Research.

[38]  F Cendes,et al.  Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy , 2009, Neurology.

[39]  Leonardo Bonilha,et al.  NETWORK ATROPHY IN TEMPORAL LOBE EPILEPSY: A VOXEL-BASED MORPHOMETRY STUDY , 2009, Neurology.

[40]  Alan C. Evans,et al.  Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy , 2009, Neurology.

[41]  Norbert Schuff,et al.  White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI , 2009, Brain : a journal of neurology.

[42]  Li-Wei Kuo,et al.  Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system , 2008, NeuroImage.

[43]  Eric Halgren,et al.  Regional neocortical thinning in mesial temporal lobe epilepsy , 2008, Epilepsia.

[44]  John S. Duncan,et al.  Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis , 2008, NeuroImage.

[45]  Bruce Hermann,et al.  The neurobehavioural comorbidities of epilepsy: can a natural history be developed? , 2008, The Lancet Neurology.

[46]  Hubert R. Dinse,et al.  Age-Related Attenuation of Dominant Hand Superiority , 2006, PloS one.

[47]  Li Min Li,et al.  Gray matter atrophy associated with duration of temporal lobe epilepsy , 2006, NeuroImage.

[48]  Luis Concha,et al.  Extratemporal White Matter Abnormalities in Mesial Temporal Lobe Epilepsy Demonstrated with Diffusion Tensor Imaging , 2006, Epilepsia.

[49]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[50]  N. Lanerolle,et al.  New facets of the neuropathology and molecular profile of human temporal lobe epilepsy , 2005, Epilepsy & Behavior.

[51]  W. Smoker,et al.  Diffusion-weighted imaging of acute excitotoxic brain injury. , 2005, AJNR. American journal of neuroradiology.

[52]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[53]  R. Bronen,et al.  MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer's loop of the optic radiation. , 2004, AJNR. American journal of neuroradiology.

[54]  P. Gemperline,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[55]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[56]  R. Cabeza,et al.  Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction , 2002, Neuroscience & Biobehavioral Reviews.

[57]  F. Mauguière,et al.  Temporopolar changes in temporal lobe epilepsy: A quantitative MRI-based study , 2002, Neurology.

[58]  O. Wiestler,et al.  Ammon's Horn Sclerosis: A Maldevelopmental Disorder Associated with Temporal Lobe Epilepsy , 2002, Brain pathology.

[59]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[60]  P J Basser,et al.  New Histological and Physiological Stains Derived from Diffusion‐Tensor MR Images , 1997, Annals of the New York Academy of Sciences.

[61]  Y Mayanagi,et al.  Mesial Temporal Lobe Epilepsy: Clinical Features and Seizure Mechanism , 1996, Epilepsia.

[62]  B. Milner,et al.  The role of the left hippocampal region in the acquisition and retention of story content , 1990, Neuropsychologia.

[63]  M. F. Møller A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1990 .

[64]  B. Milner,et al.  Right hippocampal impairment in the recall of spatial location: Encoding deficit or rapid forgetting? , 1989, Neuropsychologia.

[65]  L. Hedges,et al.  Nonparametric estimators of effect size in meta-analysis. , 1984 .

[66]  G. Goldstein,et al.  Does the right hemisphere age more rapidly than the left? , 1981, Journal of clinical neuropsychology.

[67]  Jason W. Brown,et al.  Hypothesis on cerebral dominance , 1975, Neuropsychologia.

[68]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[69]  G. Frisoni,et al.  Fractional anisotropy changes in Alzheimer's disease depend on the underlying fiber tract architecture: a multiparametric DTI study using joint independent component analysis. , 2014, Journal of Alzheimer's disease : JAD.

[70]  Ameer Pasha Hosseinbor,et al.  Characterization of Cerebral White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains , 2011, Brain Connect..

[71]  Ruopeng Wang,et al.  Diffusion Tensor Imaging of the Brain , 2007 .

[72]  Geoffrey E. Hinton,et al.  Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks , 2006 .

[73]  J. Thiran,et al.  Fiber tracts of high angular resolution diffusion MRI are easily segmented with spectral clustering. , 2005 .

[74]  Bertrand Devaux,et al.  Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. , 2004, Brain : a journal of neurology.

[75]  D W Harrison,et al.  Is right hemisphere decline in the perception of emotion a function of aging? , 1994, The International journal of neuroscience.