Construction of WO3/Ti-doped WO3 bi-layer nanopore arrays with superior electrochromic and capacitive performances

[1]  H. Tan,et al.  Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties , 2019, Chemical Engineering Journal.

[2]  H. Tan,et al.  Preparation of V2O5 dot-decorated WO3 nanorod arrays for high performance multi-color electrochromic devices , 2018 .

[3]  Xiaomin Li,et al.  Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications , 2018, Applied Surface Science.

[4]  J. Cui,et al.  In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance , 2018, RSC advances.

[5]  J. Tu,et al.  Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. , 2016, Journal of colloid and interface science.

[6]  T. Mahalingam,et al.  Studies on growth and characterization of heterogeneous tungsten oxide nanostructures for photoelectrochemical and gas sensing applications , 2016 .

[7]  C. Granqvist,et al.  Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films. , 2015, ACS applied materials & interfaces.

[8]  Guofa Cai,et al.  Electrochromo-supercapacitor based on direct growth of NiO nanoparticles , 2015 .

[9]  Tianyi Kou,et al.  Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors , 2014 .

[10]  Hongyuan Wei,et al.  Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance , 2014 .

[11]  Xuehong Lu,et al.  One-pot sequential electrochemical deposition of multilayer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties , 2014 .

[12]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[13]  Xu Lu,et al.  Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. , 2013, ACS applied materials & interfaces.

[14]  Guofa Cai,et al.  Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template , 2013 .

[15]  T. Ryhänen,et al.  A nanostructured electrochromic supercapacitor. , 2012, Nano letters.

[16]  J. S. Lee,et al.  Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction , 2010 .

[17]  Andrei Ghicov,et al.  TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. , 2008, Journal of the American Chemical Society.

[18]  B. Liu,et al.  Template synthesis and characterization of WO3/TiO2 composite nanotubes , 2005 .

[19]  Hiroki Habazaki,et al.  Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment , 2002 .

[20]  C. E. Tracy,et al.  Raman spectroscopic studies of electrochromic a-WO3 , 1999 .

[21]  Bernard Desbat,et al.  Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates , 1987 .

[22]  E. Salje,et al.  Physical properties and phase transitions in WO3 , 1975 .

[23]  Chaiwat Engtrakul,et al.  Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance , 2015 .

[24]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .