Mechanically robust and conductive zwitter ionic polymer coated electrospun nanofibrous electrolyte membranes for wireless human motion detection and capacitor applications

[1]  Xuelai Zhang,et al.  A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials , 2022, Journal of Energy Storage.

[2]  F. Stadler,et al.  Dynamically bonded, tough, and conductive MXene@oxidized sodium alginate: Chitosan based multi-networked elastomeric hydrogels for physical motion detection. , 2022, International journal of biological macromolecules.

[3]  Huanxin Li,et al.  A Review on the Conventional Capacitors, Supercapacitors, and Emerging Hybrid Ion Capacitors: Past, Present, and Future , 2022 .

[4]  Xianluo Hu,et al.  Electrospun poly(ionic liquid) nanofiber separators with high lithium-ion transference number for safe ionic-liquid-based lithium batteries in wide temperature range , 2022, Materials Today Physics.

[5]  G. Sui,et al.  Self‐Enhancing Gel Polymer Electrolyte by In Situ Construction for Enabling Safe Lithium Metal Battery , 2021, Advanced science.

[6]  Jingkun Xu,et al.  Polydopamine bridged MXene and NH2-MWCNTs nanohybrid for high-performance electrochemical sensing of Acetaminophen , 2021, Applied Surface Science.

[7]  Weiqi Wang,et al.  Construction of sensitive strain sensing nanofibrous membrane with polydopamine-modified MXene/CNT dual conductive network , 2021, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[8]  B. Niu,et al.  Highly sensitive and stretchable fiber strain sensors empowered by synergetic conductive network of silver nanoparticles and carbon nanotubes , 2021, Applied Materials Today.

[9]  A. Gu,et al.  Flexible, transparent, strong and high dielectric constant composite film based on polyionic liquid coated silver nanowire hybrid , 2021, Applied Surface Science.

[10]  S. Lanceros‐Méndez,et al.  Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cation , 2021, Polymer.

[11]  Li Niu,et al.  Highly stretchable strain sensor with tunable sensitivity via polydopamine template-assisted dual-mode cooperative conductive network for human motion detection , 2021 .

[12]  M. Shekh,et al.  Novel nanofibrous membrane‐supporting stem cell sheets for plasmid delivery and cell activation to accelerate wound healing , 2021, Bioengineering & translational medicine.

[13]  Ilker S. Bayer,et al.  Stretchable graphene and carbon nanofiber capacitive touch sensors for robotic skin applications , 2021 .

[14]  Kuldeep Mishra,et al.  Studies on ionic liquid based nanocomposite gel polymer electrolyte and its application in sodium battery , 2021 .

[15]  T. Someya,et al.  Electrospun nanofiber-based soft electronics , 2021, NPG Asia Materials.

[16]  Seeram Ramakrishna,et al.  Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation , 2020 .

[17]  John Wang,et al.  Electrospun Nanofibers for New Generation Flexible Energy Storage , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[18]  Juchen Guo,et al.  Development of flexible Li-ion batteries for flexible electronics , 2020 .

[19]  Nam-Trung Nguyen,et al.  Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. , 2020, Biosensors & bioelectronics.

[20]  Ming Cheng,et al.  A review of flexible force sensors for human health monitoring , 2020, Journal of advanced research.

[21]  F. Zhou,et al.  Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers , 2020, Journal of Materials Science.

[22]  Lili Wang,et al.  Nanofiber/nanowires-based flexible and stretchable sensors , 2020, Journal of Semiconductors.

[23]  M. Martínez-Ibañez,et al.  Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid , 2020, Journal of The Electrochemical Society.

[24]  M. Armand,et al.  Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects , 2019, Chem.

[25]  M. Lavorgna,et al.  Review on Polymer-Based Composite Electrolytes for Lithium Batteries , 2019, Front. Chem..

[26]  Yueming Pu,et al.  Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information , 2019, Nanoscale Research Letters.

[27]  D. Mecerreyes,et al.  Poly(ionic liquid)s/Electrospun Nanofiber Composite Polymer Electrolytes for High Energy Density and Safe Li Metal Batteries , 2019, ACS Applied Energy Materials.

[28]  Hui Huang,et al.  In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor , 2019, Applied Surface Science.

[29]  Zhong Jin,et al.  Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries , 2018, Nano Energy.

[30]  Kun Dai,et al.  A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring , 2018, Composites Science and Technology.

[31]  A. Meister,et al.  Synthesis and Morphology of Semifluorinated Polymeric Ionic Liquids , 2018, Macromolecules.

[32]  C. Zhi,et al.  Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices , 2018, Advanced Functional Materials.

[33]  C. Plesse,et al.  Synthesis of novel families of conductive cationic poly(ionic liquid)s and their application in all-polymer flexible pseudo-supercapacitors , 2018, Electrochimica Acta.

[34]  G. Cho,et al.  Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion , 2018, Smart Materials and Structures.

[35]  Jing Sun,et al.  Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires. , 2018, ACS applied materials & interfaces.

[36]  Caixia Liu,et al.  Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions , 2018 .

[37]  Bo Li,et al.  Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors. , 2018, ACS applied materials & interfaces.

[38]  Jianjun Chen,et al.  Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films , 2017 .

[39]  Drazen Fabris,et al.  Performance of Commercially Available Supercapacitors , 2017 .

[40]  F. Yan,et al.  Frontiers in poly(ionic liquid)s: syntheses and applications. , 2017, Chemical Society reviews.

[41]  A. Ray,et al.  Nano silver-embedded electrospun nanofiber of poly(4-chloro-3-methylphenyl methacrylate): use as water sanitizer , 2017, Environmental Science and Pollution Research.

[42]  R. Marcilla,et al.  Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids , 2016 .

[43]  Yichun Ding,et al.  A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring , 2016 .

[44]  K. N. Kumar,et al.  Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films , 2016 .

[45]  B. Scrosati,et al.  Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. , 2016, Angewandte Chemie.

[46]  R. Marcilla,et al.  Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s , 2015 .

[47]  R. Marcilla,et al.  All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes , 2015 .

[48]  J. Tafur,et al.  Electrical and spectroscopic characterization of PVdF-HFP and TFSI—ionic liquids-based gel polymer electrolyte membranes. Influence of ZnTf2 salt , 2014 .

[49]  Hui Yang,et al.  Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries , 2014 .

[50]  S. Ramesh,et al.  BMIMTf ionic liquid-assisted ionic dissociation of MgTf in P(VdF-HFP)-based solid polymer electrolytes , 2013 .

[51]  Wako Naoi,et al.  Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices , 2012 .

[52]  D. Mecerreyes Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes , 2011 .

[53]  Hai Zhou,et al.  Electrospun PEDOT:PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity , 2011 .

[54]  F. Vidal,et al.  Polymeric Ionic Liquids: Comparison of Polycations and Polyanions , 2011 .

[55]  M. Antonietti,et al.  Poly(ionic liquid)s: Polymers expanding classical property profiles , 2011 .

[56]  Y. Elabd,et al.  Anion exchanged polymerized ionic liquids: High free volume single ion conductors , 2011 .

[57]  R. Ruoff,et al.  High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. , 2011, ACS nano.

[58]  R. Marcilla,et al.  Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries , 2010 .

[59]  Kaori Ito,et al.  Enhanced ion conduction in imidazolium-type molten salts , 2000 .

[60]  H. Ohno,et al.  Effect of added salt species on the ionic conductivity of PEO/sulfonamide salt hybrids , 2000 .

[61]  Liwei Lin,et al.  Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring , 2021 .

[62]  Deepalekshmi Ponnamma,et al.  Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application , 2020 .

[63]  A. Arof,et al.  FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt , 2012 .

[64]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .