Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning

Mesoporous V2O5 nanofibers were fabricated by a method combining sol–gel processing with electrospinning followed by annealing in air. The resultant nanofibers were 350 nm in diameter and consisted of porous polycrystalline vanadium oxide with a specific surface area of ∼97 m2 g−1. The mesoporous V2O5 nanofibers demonstrated a significantly enhanced Li ion storage capacity of above 370 mA h g−1 and a high charge/discharge rate of up to 800 mA g−1 with little cyclic degradation.

[1]  Dawei Liu,et al.  Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation , 2010 .

[2]  G. Cao,et al.  V2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N2annealing , 2009 .

[3]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[4]  C. Brinker,et al.  Annual review of nano research , 2008 .

[5]  J. Pereira‐Ramos,et al.  Raman Microspectrometry Study of Electrochemical Lithium Intercalation into Sputtered Crystalline V2O5 Thin Films , 2008 .

[6]  Hu-lin Li,et al.  Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors , 2008 .

[7]  Jiayan Luo,et al.  Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus β-MnO2 , 2006 .

[8]  S. Ramakrishna,et al.  A review on electrospinning design and nanofibre assemblies , 2006, Nanotechnology.

[9]  Younan Xia,et al.  V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination. , 2006, Nano letters.

[10]  G. Cao,et al.  Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides , 2006 .

[11]  Hongxia Wang,et al.  Self‐Crimping Bicomponent Nanofibers Electrospun from Polyacrylonitrile and Elastomeric Polyurethane , 2005 .

[12]  G. Cao,et al.  Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures. , 2005, The journal of physical chemistry. B.

[13]  G. Cao,et al.  Effects of Thermal Annealing on the Li+ Intercalation Properties of V2O5·nH2O Xerogel Films , 2005 .

[14]  G. Cao,et al.  Growth and Electrochemical Properties of Single-Crystalline V2O5 Nanorod Arrays , 2005 .

[15]  G. Cao,et al.  Ni-V2O5.nH2O core-shell nanocable arrays for enhanced electrochemical intercalation. , 2005, The journal of physical chemistry. B.

[16]  G. Rutledge,et al.  Production of Submicrometer Diameter Fibers by Two‐Fluid Electrospinning , 2004 .

[17]  Ying Wang,et al.  Synthesis and Electrochemical Properties of Single-Crystal V2O5 Nanorod Arrays by Template-Based Electrodeposition , 2004 .

[18]  Younan Xia,et al.  Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning , 2004 .

[19]  Ying Wang,et al.  Nanostructures and Nanomaterials: Synthesis, Properties and Applications , 2004 .

[20]  Ji‐Guang Zhang,et al.  Influences of Treatment Temperature and Water Content on Capacity and Rechargeability of V 2 O 5 Xerogel Films , 2004 .

[21]  H. Kim,et al.  Vanadium pentoxide nanofibers by electrospinning , 2003 .

[22]  Younan Xia,et al.  Fabrication of Titania Nanofibers by Electrospinning , 2003 .

[23]  M. Kanatzidis,et al.  Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. , 2002, Journal of the American Chemical Society.

[24]  M. Pruski,et al.  Vanadia Gel Synthesis via Peroxovanadate Precursors. 1. In Situ Laser Raman and 51V NMR Characterization of the Gelation Process , 2000 .

[25]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[26]  M. Stanley Whittingham,et al.  The Role of Ternary Phases in Cathode Reactions , 1976 .

[27]  L. S. Birks,et al.  Particle Size Determination from X‐Ray Line Broadening , 1946 .