Yang-Mills gauge theories from simple fermionic lattice models

A doublet of three-dimensional Dirac fermions can effectively describe the low energy spectrum of a fermionic cubic lattice. We employ this fermion doubling to encode a non-Abelian SU(2) charge in the fundamental representation. We explicitly demonstrate that suitable distortion of the tunnelling couplings can introduce a scalar and a Yang-Mills field in the effective low energy description, both coupled to the Dirac fermions. The simplicity of the model suggests its physical implementation with ultra-cold atoms or molecules.

[1]  P. Zoller,et al.  Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. , 2006, Physical review letters.

[2]  P. Gaspard,et al.  Ultracold atomic gases in non-Abelian gauge potentials: The case of constant Wilson loop , 2009, 0902.3228.

[3]  R. S. Ward A Yang-Mills-Higgs monopole of charge 2 , 1981 .

[4]  J. Smit,et al.  Self-energy and flavor interpretation of staggered fermions , 1984 .

[5]  R. Jackiw,et al.  Continuum Quantum Field Theory for a Linearly Conjugated Diatomic Polymer with Fermion Fractionization , 1983 .

[6]  O. Napoly,et al.  Flavours of lagrangian Susskind fermions , 1983 .

[7]  P. Wallace The Band Theory of Graphite , 1947 .

[8]  C. Callias Axial anomalies and index theorems on open spaces , 1978 .

[9]  Alexander M. Polyakov,et al.  Particle spectrum in quantum field theory , 1974 .

[10]  K. Temme,et al.  Graphene with geometrically induced vorticity. , 2007, Physical review letters.

[11]  Christopher Mudry,et al.  Electron fractionalization in two-dimensional graphenelike structures. , 2006, Physical review letters.

[12]  M. Franz,et al.  Fractionalization in a square-lattice model with time-reversal symmetry , 2007, 0706.1559.

[13]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[14]  Low-lying Dirac spectrum of staggered quarks , 2005, hep-lat/0507011.

[15]  R. Jackiw,et al.  Chiral gauge theory for graphene. , 2007, Physical review letters.

[16]  X. Wen Origin of gauge bosons from strong quantum correlations. , 2001, Physical review letters.

[17]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[18]  R. Jackiw,et al.  Irrational versus rational charge and statistics in two-dimensional quantum systems. , 2007, Physical review letters.

[19]  Some remarks on the paper of Callias , 1978 .

[20]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .

[21]  P Zoller,et al.  Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.

[22]  M. K. Prasad Yang-Mills-Higgs monopole solutions of arbitrary topological charge , 1981 .

[23]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[24]  Elementary Excitations of a Linearly Conjugated Diatomic Polymer , 1982 .

[25]  Gerard 't Hooft,et al.  Magnetic monopoles in unified gauge theories , 1974 .

[26]  Mikhailov,et al.  Nonlocal condensates and QCD sum rules for the pion wave function. , 1986, Physical review. D, Particles and fields.

[27]  J. Schrieffer,et al.  Solitons with Fermion Number 1/2 in Condensed Matter and Relativistic Field Theories , 1981 .