Global stability of steady states in the classical Stefan problem for general boundary shapes

The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result (Hadžić & Shkoller 2014 Commun. Pure Appl. Math. 68, 689–757 (doi:10.1002/cpa.21522)) in which we studied nearly spherical shapes.

[1]  S. Shkoller,et al.  Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains , 2016, Journal of Mathematical Fluid Mechanics.

[2]  Marcos Antón Amayuelas The Stefan problem , 2015 .

[3]  Daniel Coutand,et al.  Well-Posedness of the Free-Boundary Compressible 3-D Euler Equations with Surface Tension and the Zero Surface Tension Limit , 2012, SIAM J. Math. Anal..

[4]  S. Shkoller,et al.  Global Stability and Decay for the Classical Stefan Problem , 2012, 1212.1422.

[5]  S. Shkoller,et al.  Well-Posedness in Smooth Function Spaces for the Moving-Boundary Three-Dimensional Compressible Euler Equations in Physical Vacuum , 2012 .

[6]  Charles Fefferman,et al.  Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves , 2011, 1102.1902.

[7]  Sunhi Choi,et al.  Regularity of one-phase Stefan problem near Lipschitz initial domain , 2008 .

[8]  Inwon C. Kim,et al.  Viscosity Solutions for the Two-Phase Stefan Problem , 2010, 1010.4285.

[9]  Lionel Levine,et al.  Logarithmic fluctuations for internal DLA , 2010, 1010.2483.

[10]  Patricio Felmer,et al.  Resonance Phenomena for Second-Order Stochastic Control Equations , 2010, SIAM J. Math. Anal..

[11]  S. Shkoller,et al.  A simple proof of well-posedness for the free-surfaceincompressible Euler equations , 2010 .

[12]  S. Shkoller,et al.  WELL-POSEDNESS IN SMOOTH FUNCTION SPACES FOR THE MOVING-BOUNDARY 1-D COMPRESSIBLE EULER EQUATIONS IN PHYSICAL VACUUM , 2010 .

[13]  Absence of Squirt Singularities for the Multi-Phase Muskat Problem , 2009, 0911.4109.

[14]  S. Shkoller,et al.  Well‐posedness in smooth function spaces for moving‐boundary 1‐D compressible euler equations in physical vacuum , 2009, 1003.4721.

[15]  S. Armstrong The Dirichlet problem for the Bellman equation at resonance , 2008, 0812.1327.

[16]  A. Córdoba,et al.  Interface evolution: the Hele-Shaw and Muskat problems , 2008, 0806.2258.

[17]  A. Visintin Chapter 8 Introduction to Stefan-Type Problems , 2008 .

[18]  G. Simonett,et al.  Existence of analytic solutions for the classical Stefan problem , 2007 .

[19]  G. Simonett,et al.  EXISTENCE OF ANALYTIC SOLUTIONS FOR THE CLASSICAL , 2007 .

[20]  B. Gustafsson,et al.  Conformal and Potential Analysis in Hele-Shaw Cells , 2006 .

[21]  S. Shkoller,et al.  Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005, math/0511236.

[22]  L. Caffarelli,et al.  A Geometric Approach to Free Boundary Problems , 2005 .

[23]  All Time Smooth Solutions of the One-Phase Stefan Problem and the Hele-Shaw Flow , 2005 .

[24]  A. Quaas,et al.  Nonlinear eigenvalues and bifurcation problems for Pucci's operators , 2004, math/0409298.

[25]  M. Biagini,et al.  On a one-phase Stefan problem , 2005 .

[26]  A. Vasil Conformal and Potential Analysis in Hele-Shaw cells , 2004 .

[27]  Inwon C. Kim Uniqueness and Existence Results on the Hele-Shaw and the Stefan Problems , 2003 .

[28]  F. Quirós,et al.  Asymptotic convergence of the Stefan problem to Hele-Shaw , 2001 .

[29]  V. Solonnikov,et al.  Lp-theory for the Stefan problem , 2000 .

[30]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .

[31]  L. Caffarelli,et al.  PHASE TRANSITION PROBLEMS OF PARABOLIC TYPE : FLAT FREE BOUNDARIES ARE SMOOTH , 1998 .

[32]  K. Herbert Classical solutions to phase transition problems are smooth , 1998 .

[33]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .

[34]  Luis A. Caffarelli,et al.  Regularity of the free boundary in parabolic phase-transition problems , 1996 .

[35]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[36]  L. Evans,et al.  Continuity of the temperature in the two-phase Stefan problem , 1983 .

[37]  P. Lions Bifurcation and optimal stochastic control , 1983 .

[38]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[39]  A. Friedman Variational principles and free-boundary problems , 1982 .

[40]  Ei-ichi Hanzawa,et al.  Classical solutions of the Stefan problem , 1981 .

[41]  D. Kinderlehrer,et al.  The smoothness of the free boundary in the one phase stefan problem , 1978 .

[42]  Luis A. Caffarelli,et al.  The regularity of free boundaries in higher dimensions , 1977 .

[43]  D. Kinderlehrer,et al.  Regularity in free boundary problems , 1977 .

[44]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[45]  J. K. Oddson On the rate of decay of solutions of parabolic differential equations. , 1969 .

[46]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[47]  Avner Friedman,et al.  The Stefan problem in several space variables , 1968 .

[48]  G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  L. Rayleigh On The Instability Of Jets , 1878 .