Optimisation of the dislocation filter layers in 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

The authors report 1.3-μm InAs/GaAs quantum-dot (QD) lasers monolithically grown on a Si substrate by optimising the dislocation filter layers (DFLs). InAlAs/GaAs strained layer superlattices (SLSs) have been presented as DFLs in this study. A distinct improvement in the InAs/GaAs QDs was observed when using InAlAs/GaAs SLSs because of the effective filtering of threading dislocations. Consequently, a laser with a threshold current density of 194 A/cm2 at room temperature and an operating temperature as high as 85°C is successfully demonstrated. These results show the potential for integrating III–V QD materials on a Si platform via InAlAs/GaAs SLSs as DFL.

[1]  M. Yamaguchi,et al.  Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates , 1989 .

[2]  Yoshiji Horikoshi,et al.  Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy , 1991 .

[3]  Alwyn J. Seeds,et al.  Electrically pumped continuous-wave 1.3-.spl mu/m InAs/GaAs quantum dot lasers monolithically grown on Si substrates , 2014 .

[4]  Alexey E. Zhukov,et al.  GaAs-based long-wavelength lasers , 2000 .

[5]  M. S. Skolnick,et al.  Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .

[6]  Graham T. Reed,et al.  Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator , 2004 .

[7]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[8]  Richard A. Hogg,et al.  The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates , 2012 .

[9]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[10]  Alexandros Georgakilas,et al.  Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers , 1994 .

[11]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[12]  A. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Zetian Mi,et al.  High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.

[14]  A. Seeds,et al.  1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers , 2014, 2014 International Semiconductor Laser Conference.

[15]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[16]  Peter Michael Smowton,et al.  InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si Substrate , 2014 .

[17]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[18]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[19]  Masahiko Sano,et al.  InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .

[20]  Xuezhe Zheng,et al.  High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage. , 2010, Optics letters.