Locality and entanglement of indistinguishable particles

Entanglement is one of the strongest quantum correlation, and is a key ingredient in fundamental aspects of quantum mechanics and a resource for quantum technologies. While entanglement theory is well settled for distinguishable particles, there are five inequivalent approaches to entanglement of indistinguishable particles. We analyse the different definitions of indistinguishable particle entanglement in the light of the locality notion. This notion is specified by two steps: (i) the identification of subsystems by means of their local operators; (ii) the requirement that entanglement represent correlations between the above subsets of operators. We prove that three of the aforementioned five entanglement definitions are incompatible with any locality notion defined as above.

[1]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[2]  Michael M. Wolf,et al.  Entanglement in fermionic systems , 2007, 0705.1103.

[3]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[4]  F. Benatti,et al.  Entanglement in algebraic quantum mechanics: Majorana fermion systems , 2016, 1605.08298.

[5]  U. Marzolino,et al.  Entanglement in fermion systems and quantum metrology , 2014, 1403.1144.

[6]  G. Florio,et al.  SPATIAL SEPARATION AND ENTANGLEMENT OF IDENTICAL PARTICLES , 2014 .

[7]  A. P. Balachandran,et al.  Algebraic Approach to Entanglement and Entropy , 2013, 1301.1300.

[8]  M B Plenio,et al.  Spatial entanglement of bosons in optical lattices , 2013, Nature Communications.

[9]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[10]  P. Zanardi Quantum entanglement in fermionic lattices , 2002 .

[11]  R. L. Franco,et al.  Activating remote entanglement in a quantum network by local counting of identical particles , 2019, Physical Review A.

[12]  H. A. Boateng Periodic Coulomb Tree Method: An Alternative to Parallel Particle Mesh Ewald. , 2019, Journal of chemical theory and computation.

[13]  H M Wiseman,et al.  Entanglement of indistinguishable particles shared between two parties. , 2003, Physical review letters.

[14]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[15]  M. Kus,et al.  Entanglement for multipartite systems of indistinguishable particles , 2010, 1012.0758.

[16]  J. S. Dehesa,et al.  Separability criteria and entanglement measures for pure states of N identical fermions , 2009, 1002.0465.

[17]  J. Ignacio Cirac,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .

[18]  F. Strocchi,et al.  An Introduction To The Mathematical Structure Of Quantum Mechanics , 2008 .

[19]  M B Plenio,et al.  Extracting entanglement from identical particles. , 2013, Physical review letters.

[20]  L. You,et al.  Quantum correlations in two-boson wave functions , 2001 .

[21]  Bei Zeng,et al.  Entanglement in a two-identical-particle system , 2001 .

[22]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[23]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .

[24]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Ugo Marzolino,et al.  Entanglement in dissipative dynamics of identical particles , 2013, 1311.7592.

[27]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[28]  U. Marzolino,et al.  Entanglement in indistinguishable particle systems , 2020 .

[29]  N. Gisin,et al.  Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .

[30]  Giuseppe Compagno,et al.  Quantum entanglement of identical particles by standard information-theoretic notions , 2015, Scientific Reports.

[31]  W. D. Muynck Distinguishable- and indistinguishable-particle descriptions of systems of identical particles , 1975 .

[33]  N. L. Harshman,et al.  Observables can be tailored to change the entanglement of any pure state , 2011, 1102.0955.

[34]  W. Thirring,et al.  Entanglement or separability: the choice of how to factorize the algebra of a density matrix , 2011, 1106.3047.

[35]  Tsubasa Ichikawa,et al.  Entanglement of indistinguishable particles , 2010, 1009.4147.

[36]  Fedor Herbut How to distinguish identical particles , 2001 .

[37]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[38]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[39]  Christian Schilling,et al.  Fermionic systems for quantum information people , 2020, Journal of Physics A: Mathematical and Theoretical.

[40]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[41]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  U. Marzolino,et al.  Sub-shot-noise quantum metrology with entangled identical particles , 2010, 1001.3313.

[44]  Fabio Benatti,et al.  Remarks on Entanglement and Identical Particles , 2017, Open Syst. Inf. Dyn..

[45]  Yu Shi Quantum entanglement of identical particles , 2003 .

[46]  U. Marzolino,et al.  Bipartite entanglement in systems of identical particles: The partial transposition criterion , 2012, 1202.2993.

[47]  Fernando de Melo,et al.  Entanglement of identical particles and the detection process , 2009, 0902.1684.

[48]  Michael J. Bremner,et al.  Quantum sampling problems, BosonSampling and quantum supremacy , 2017, npj Quantum Information.

[49]  Miles J. Padgett,et al.  Imaging with quantum states of light , 2019, Nature Reviews Physics.

[50]  Reinaldo O. Vianna,et al.  Computable measures for the entanglement of indistinguishable particles , 2012, 1211.1886.

[51]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[52]  Kuntal Sengupta,et al.  Quantum Bell nonlocality as a form of entanglement , 2020, Physical Review A.

[53]  U. Marzolino,et al.  Entanglement robustness and geometry in systems of identical particles , 2012, 1204.3746.

[54]  T. Ichikawa,et al.  Separability of N-particle fermionic states for arbitrary partitions , 2009, 0910.1658.