Combinatorial boundary of a 3D lattice point set

Boundary extraction and surface generation are important topological topics for three-dimensional digital image analysis. However, there is no adequate theory to establish relations between these different topological procedures in a completely discrete way. In this paper, we present a new boundary extraction algorithm which gives not only a set of border points but also a polyhedral surface whose vertices are border points by using the concepts of combinatorial/algebraic topologies. We show that our boundary can be considered to be a triangulation or polyhedrization of border points in the sense of general topology, that is, we clarify relations between border points and the triangulated surface.

[1]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[2]  G. Ziegler Lectures on Polytopes , 1994 .

[3]  R. Klette Digital Topology for Image Analysis-PART I-Basics and Planar Image Carriers , 2002 .

[4]  A W Tucker,et al.  On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[5]  John Mylopoulos,et al.  Some Results in Computational Topology , 1973, JACM.

[6]  Journal of the Association for Computing Machinery , 1961, Nature.

[7]  Atsushi Imiya,et al.  Boundary Extraction of Discrete Objects , 1998, Comput. Vis. Image Underst..

[8]  A. W. Roscoe,et al.  Concepts of digital topology , 1992 .

[9]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[10]  J. R. Newman The World of Mathematics , 1961 .

[11]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[12]  Reinhard Klette,et al.  Topology of grid continua , 1998, Optics & Photonics.

[13]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[14]  Azriel Rosenfeld,et al.  Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..

[15]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[16]  Eric Andres,et al.  Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..

[17]  Gabor T. Herman,et al.  Discrete multidimensional Jordan surfaces , 1992, CVGIP Graph. Model. Image Process..

[18]  Gabor T. Herman,et al.  The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm , 1980, SIGGRAPH '80.

[19]  Jean Françon Discrete Combinatorial Surfaces , 1995, CVGIP Graph. Model. Image Process..

[20]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[21]  K. P. Hart,et al.  Topology and its Applications , 2007 .

[22]  Eric Andres,et al.  The Discrete Analytical Hyperspheres , 1997, IEEE Trans. Vis. Comput. Graph..

[23]  Vladimir Kovalevsky A Topological Method of Surface Representation , 1999, DGCI.

[24]  A. W. Roscoe,et al.  A theory of binary digital pictures , 1985, Comput. Vis. Graph. Image Process..

[25]  Gilles Bertrand,et al.  Simplicity surfaces: a new definition of surfaces in Z3 , 1998, Optics & Photonics.

[26]  Atsushi Imiya,et al.  Marching cubes method with connectivity , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[27]  Gabor T. Herman,et al.  The theory, design, implementation and evaluation of a three-dimensional surface detection algorit , 1981 .

[28]  E. Moise Geometric Topology in Dimensions 2 and 3 , 1977 .

[29]  K. Voss Discrete Images, Objects, and Functions in Zn , 1993 .

[30]  A. W. Roscoe,et al.  Continuous analogs of axiomatized digital surfaces , 1984, Comput. Vis. Graph. Image Process..

[31]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[32]  Isabelle Debled-Rennesson,et al.  New approach to digital planes , 1995, Other Conferences.

[33]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .