Complex zero-free regions at large |q| for multivariate Tutte polynomials (alias Potts-model partition functions) with general complex edge weights

We find zero-free regions in the complex plane at large |q| for the multivariate Tutte polynomial (also known in statistical mechanics as the Potts-model partition function) Z"G(q,w) of a graph G with general complex edge weights w={w"e}. This generalizes a result of Sokal (2001) [28] that applies only within the complex antiferromagnetic regime |1+w"e|=<1. Our proof uses the polymer-gas representation of the multivariate Tutte polynomial together with the Penrose identity.

[1]  Alan D. Sokal,et al.  Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.

[2]  Aldo Procacci,et al.  Regions Without Complex Zeros for Chromatic Polynomials on Graphs with Bounded Degree , 2008, Comb. Probab. Comput..

[3]  H. Kunz,et al.  General properties of polymer systems , 1971 .

[4]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[5]  Lahoussine Laanait,et al.  Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation , 1991 .

[6]  Ira M. Gessel,et al.  The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions , 1996, Electron. J. Comb..

[7]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[8]  Alan D. Sokal,et al.  Chromatic Roots are Dense in the Whole Complex Plane , 2000, Combinatorics, Probability and Computing.

[9]  C. Berg The Stieltjes cone is logarithmically convex , 1979 .

[10]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[11]  D. H. Martirosian Translation invariant Gibbs states in theq-state Potts model , 1986 .

[12]  Aldo Procacci,et al.  Cluster Expansion for Abstract Polymer Models. New Bounds from an Old Approach , 2007 .

[13]  C. Borgs,et al.  Finite-size scaling for Potts models , 1991 .

[14]  F. Y. Wu Potts model of magnetism (invited) , 1984 .

[15]  Christian Borgs,et al.  Absence of Zeros for the Chromatic Polynomial on Bounded Degree Graphs , 2006, Combinatorics, Probability and Computing.

[16]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[17]  Anders Björner,et al.  Matroid Applications: Homology and Shellability of Matroids and Geometric Lattices , 1992 .

[18]  A. Scott,et al.  The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.

[19]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[20]  Jean Ruiz,et al.  Phases coexistence and surface tensions for the potts model , 1986 .

[21]  Jean Ruiz,et al.  Theq-state Potts model in the standard Pirogov-Sinai theory: Surface tensions and Wilson loops , 1990 .

[22]  G. Ziegler Lectures on Polytopes , 1994 .

[23]  F. Y. Wu The Potts model , 1982 .

[24]  Bill Jackson,et al.  Maxmaxflow and Counting Subgraphs , 2010, Electron. J. Comb..

[25]  C. Berg Quelques remarques sur le cone de Stieltjes , 1980 .

[26]  G. Grimmett,et al.  The random-cluster model on the complete graph , 1996 .

[27]  A. Sokal Real-variables characterization of generalized Stieltjes functions , 2009, 0902.0065.

[28]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[29]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[30]  David Preiss,et al.  Cluster expansion for abstract polymer models , 1986 .

[31]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Christian Berg,et al.  Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity , 2007 .

[33]  Stieltjes, Poisson and other integral representations for functions of Lambert W , 2011, 1103.5640.

[34]  R. Fernández,et al.  On the Convergence of Cluster Expansions for Polymer Gases , 2010, 1002.3261.