Biomimetic synthesis of quinoxalines in water

[1]  K. R. Rao,et al.  Facile and efficient synthesis of 3,4,5-substituted furan-2(5H)-ones by using β-cyclodextrin as reusable catalyst , 2009 .

[2]  B. Das,et al.  An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization–oxidation processes using HClO4·SiO2 as a heterogeneous recyclable catalyst ☆ , 2007 .

[3]  W. Ren,et al.  Ketones as a new synthon for quinoxaline synthesis , 2007 .

[4]  V. Kumar,et al.  Supramolecular synthesis of selenazoles using selenourea in water in the presence of beta-cyclodextrin under atmospheric pressure. , 2007, The Journal of organic chemistry.

[5]  K. R. Rao,et al.  Aqueous phase synthesis of vic-halohydrins from olefins and N-halosuccinimides in the presence of β-cyclodextrin , 2006 .

[6]  V. Kumar,et al.  Aqueous phase mono-protection of amines and amino acids as N-benzyloxycarbonyl derivatives in the presence of β-cyclodextrin , 2006 .

[7]  F. Palacios,et al.  Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions. , 2006, The Journal of organic chemistry.

[8]  R. Bhosale,et al.  An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst , 2005 .

[9]  C. Yao,et al.  Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines , 2005 .

[10]  Yi‐hong Ding,et al.  High Chiral Discrimination of 2,2′-Ditellurobis(2-deoxy-β-cyclodextrin) in Recognition of Dansyl-D/L-phenylalanine , 2005 .

[11]  Jiann T. Lin,et al.  Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials , 2005 .

[12]  K. Park,et al.  Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation. , 2005, Chemical communications.

[13]  K. R. Rao,et al.  Synthesis of Thiiranes from Oxiranes in the Presence of β‐Cyclodextrin in Water , 2004 .

[14]  C. D. Wilfred,et al.  Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. , 2004, Organic & biomolecular chemistry.

[15]  Gang Zhao,et al.  Quinoxaline excision: a novel approach to tri- and diquinoxaline cavitands. , 2004, Organic letters.

[16]  Yong Hae Kim,et al.  Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. , 2004, Bioorganic & medicinal chemistry letters.

[17]  M. Myers,et al.  Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor. , 2003, Bioorganic & medicinal chemistry letters.

[18]  V. Lynch,et al.  Quinoxaline-bridged porphyrinoids. , 2002, Journal of the American Chemical Society.

[19]  S. Antoniotti,et al.  Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines , 2002 .

[20]  M. Crossley,et al.  Laterally-extended porphyrin systems incorporating a switchable unit. , 2002, Chemical communications.

[21]  J. Sessler,et al.  Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: efficient fluoride anion receptors. , 2002, Journal of the American Chemical Society.

[22]  N. Ede,et al.  Solid-phase synthesis of quinoxalines on SynPhase™ Lanterns , 2001 .

[23]  I. Sage,et al.  Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications , 2001 .

[24]  A. Elwahy Synthesis of New Benzo-substituted Macrocyclic Ligands Containing Quinoxaline Subunits , 2000 .

[25]  H. Schneider,et al.  NMR Studies of Cyclodextrins and Cyclodextrin Complexes. , 1998, Chemical reviews.

[26]  Donal D. C. Bradley,et al.  Use of poly(phenyl quinoxaline) as an electron transport material in polymer light‐emitting diodes , 1996 .

[27]  K. Makino,et al.  Regent progress in the quinoxaline chemistry. Synthesis and biological activity , 1988 .